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ABSTRACT

The Modal Identification Experiment (MIE) is a proposed experiment to define the
dynamic characteristics of Space Station Freedom. Previous studies have emphasized
free-decay modal identification. The feasibility of using a forced response method
(Observer/Kalman Filter Identification (OKID)) is addressed. The interest in using
OKID is to (1) determine the input mode shape matrix which can be used for controller
design or control-structure interaction analysis, and (2) investigate if forced response
methods may aid in separating closely space modes. A model of the SC-7 configuration
of Space Station Freedom was excited using simulated control system thrusters to obtain
acceleration output. It is shown that an ’optimum’ number of outputs exist for OKID.
To recover global mode shapes, a modified method, called Global-Local OKID, was
developed. This study shows that using data from a long forced response followed by
free-decay leads to the ’best’ modal identification. Twelve out of the thirteen target
modes were identified for such an output. In contrast, five, six, and six target modes
were recovered from the three individual twenty second forced simulations. In addition,
the 'on-off” commands to the thrusters can be used to produce step inputs for System

identification.
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NOMENCLATURE

System order

Continuous system (state) matrix
Continuous control input matrix
Output matrix

Direct transmission matrix
Discrete system (state) matrix

Discrete control input matrix

Observer system (state) matrix

Observer control input matrix
Observer decay

Number of outputs (measurements)
Number of inputs (excitations)
Data length

Observer data length

Input data matrix

Output data matrix

System Markov Parameter matrix
Observer Markov Parameter matrix
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Discrete observability matrix and/or Observer input matrix

Discrete controllability matrix

(k-1)th time shift Hankel data matrix
Truncated left matrix of singular vectors
Truncated diagonal matrix of singular values
Truncated right matrix of singular vectors
Observer gain

Independent output subset in OKID
Remaining output subset (No-No*)
Output matrix for No*

Direct transmission matrix for No*®
Output matrix for No

Direct transmission matrix for No
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L INTRODUCTION

Space structures (e.g., Space Station Freedom (SSF)) are becoming increasingly
complex. To mathematically model such structures requires high-fidelity finite element
methods, which may necessarily increase cost (time, money, etc.). Component mode
synthesis (CMS) techniques can be used to circumvent this dilemma. These techniques
discretize a structure into components and analyses are done component by component.
Component results are then truncated and combined to form a complete system model.
But even CMS, while computationally efficient, has its drawbacks, namely, it is highly
susceptible to modal truncation errors.! Consequently, any finite element or continuum
model, for that matter, will be in error primarily due to modeling issues. These models,
therefore, require validation or correction before they can be used for control design or
control-structure interaction analysis, for example. One method which accomplishes this
task is linear system identification. Linear system identification is the process of usiﬁg
experimental data to obtain a linear model and, if unknown, the data’s noise
characteristics. The data can be obtained from either ground-based or operational
testing. However, this process is also not without difficulties.>® Some of the challenging
issues include extrapolation from a one-g to a zero-g environment if ground-based data
is used, high modal density, low frequency range of interest, nonlinearity, non—classical
damping, and limited excitation and measurement capabilities.* In the end, a model
based as much on theory as on experiment is required for any meaningful analysis.

The Modal Identification Experiment (MIE) is a proposed experiment to determine

the 'dynamici: charactenstxcs ot:' the SSF m orbit. While MIE is not 7r7eqruir'ed in the Space



Station Freedom Program, it is an extension of the structure verification effort and there
are numerous benefits. The first benefit is to improve the finite element modeling
techmqu;sfor lal;gé sméeégctum; In particular, hdarrﬁi)inrg estimates for these
structures are still barsi;allyiunknown. Good estimates are necessary because the steady
state vibration amplitude near a resonance frequency is inversely proportional to the
damping. Another benefit isrto provide improvements in second-generation design of
equipment.’

Many methods exist in the linear system identification area.® Some work in time and
other; in 7the fféﬁhcncy domain. This Study considers only time-domain methods since
they were found to be superior to the frequency domain methods on the SSF due to the
wide frequency range of interest.* In particular, the Eigensystem Realization Algorithm
(ERAY)’ is one such method which can use free-decay for modal identification. However,
it may be difficult to identify closely spaced modes because of their similarity in modal
amplitudes. In addition, one mode may decay faster than the other and may not be
15entxfied A forrcedrresip&;;; rﬁetﬁod may provide better identification since both modes
will be varying in amplitude and phase during the excitation.

Recently, the Observer/Kalman Filter Identification Method (OKID)* was developed
for application to forced response data. Previous studies have addressed methods for
determining the modal characteristics using free response data.* This study addresses the
feasibility of using the OKID method. One issue is the knowledge of thé input forces

since there is no plan to measure the forces on the SSF in orbit. In particular, the actual

inputs produced by the ACS (attitude control system) jets are known to have a rise and



fall time, whereas, the commanded inputs are step inputs. The effect of this on the
system identification using OKID is investigated. Another issue is the limited amount

of forced response data. That is, the baseline experiment length is 120 seconds with only

20 seconds of forcing.



11, FORMULATION OF EIGENSYSTEM REALIZATION ALGORITHM (ERA)
The equations of motion for a linear structure are often written as a set of finite-
dimensional, linear, second-order differential equations
MO 4@ + CO90) + KO 9@ = 1O @.n
where the square matrices M(r) and K(f) are mass and stiffness and C (¢) represents the

damping mechanism, which is assumed to be viscous. The vector g(f) contains the

generalized displacements and f(7) is the load vector.

With

q(1)
q(¢)

x() =

Eq. (2.1) can be equivalently put into state-variable or fundamental form

() = A()x() + BOu()
() = COx(@) + DO)u(t)

(2.2)

where subscript ¢ denotes a continuous time matrix. The matrix A_ represents the mass,
damping, and stiffness, and B, characterizes the input u(r), that is, it contains the input
locations and could also contain conversion factors if u(¢) is, for example, voltage. The
measurement matrix C selects the proper terms from the state vector x(f) and finally,
D is the direct transmission matrix where the input appears directly in the measurement

vector y(f) and exists only if the measurements are acceleration.

4
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A solution to Egs. (2.2) exists if A(f) and B(#) do not vary with time (in which case

C() and D(¢) also do not vary with time) and is written

x(@) = e Vx() + le"“”’Bcu(f)dr 2.3

&

Without loss of generality, let £,=0. Then Eq. (2.3) becomes

x(f) = e*x(0) + ]e‘-""’Bcu(r)dr (2.4

R _ 0

Eq. (2.4) should be discretized in time to reflect the fact that in practice measurements

are available at discrete times only. Therefore, if we assume a sampling rate of At then

t = kAt

(7.9
. k=1,., 2.5)
x(kAr) = e**¥x(0) + [ 4B u(r)dr ®

0

If k is increased by 1 to k+1 we obtain

k+1)2 ] - .
x((k+1)A1) = e*“x(kAs) + [ AR y(rydr , k=0,.,00  (2.6)

kAL
Eq. (2.6) is cumbersome to use in practice because of the need to integrate for each
value of k. However, if we assume that the input u(s) is constant over the interval
[kAt, (k+1)Af), that is, u(s)=u(kAr) for all s when kar <s < (k+1)Ar (which is often

done in digital control applications where the input is generated b} éomputer), then it can

be shown that Eq. (2.6) becomes



x([k+1]As) = Ax(kAt) + Bu(kAr)

= 2.
y(kAs) = Cx(kAr) + Du(kAr) ,  k=0,1,., 00 Q.7
where
o AZA)”
Ane .-2-; m!
n Ar had A:'(At)uol
B lle d‘r] B, [g — ]Bc

Dropping the notation kAr in favor of k, realizing that when we say k we mean kAz,

we obtain the discrete state-variable equations

x(k+1) = Ax(k) + Bu(k)

= 2.8
yk) = Cx(k) + Du(k) k=0,1,..,00 2.8)

The matrix AeR(n,n), where R(n,n) is the set of real n x n matrices, BeR(n,Ni),
CeR(No,n), and De R(No,Ni) where No and Ni are the number of outputs and inputs,
respectively, and n is the system order (equal to twice the number of vibration modes).
Eqgs. (2.8) represent a recursive algorithm for computing the measurement responses
(e.g., position, velocity, or acceleration) at the sampling instances without the need for
integration. The only assumption is that the input is constant over the sampling time.
This assumption is called a zero-order hold and will be discussed further in section 8.3.

The output can be calculated from Egs. (2.8) but requires the state vector. An
explicit solution (depending only on the input) can be obtained by carrying out a few

operations from Eqgs. (2.8). Assuming x(0)=0
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x(1) = Bu(0)
x(2) = ABu(0) + Bu(l)
x(3) = A?Bu(0) + ABu(1) + Bu(2)

y(0) = Du(0)

y(1) = CBu(0) + Du(1)

y(2) = CABu(0) +CBu(l) + Du(2)

y(3) = CA*Bu(0) + CABu(1) + CBu(2) +Du(3)

From above, the solution can then be written as

y(k) = E Y, u(0) 2.9)

=0
where
Y = D Jj=0
J CA'B j>0
Y,,j20 are called the Markov Parameters or pulse response functions and are the

solution to Eqs. (2.8) when a unit pulse is applied, i.e.,

wh -{o ¥

It should be pointed out that the Markov Parameters are unique while {A, B, C, D} need

not be unique. That is, there exists many sets of {A, B, C, D} that give the same pulse

response. To see this, let T represent a non-singular coordinate transformation (z = Tx),

then



A’ = TAT
BI = T—IB
C' =CT

The Markov Parameters under this transformation are
Y, = C'’A’*'B = (CT(T'ATY"!(T"'B) (2.10)
But since (T'AT)! = T'A*'T (Appendix A), Eq. (2.10) becomes
Y, =CA*'B =Y,
Since there are an infinite number of coordinate transformations, there are an infinite

number of realizations that give the same Markov Parameters.

For a linear system with zero-order hold inputs, the Markov Parameters contain all

the information about the system (i.e., A, B, C, D). The purpose of minimum
realization theory is to find state-space matrices {4,B,C, D} given the sequence of

Markov Parameters ¥, , 0 <k < oo such that the dimension of 4 is as small as possible.
To realize the state-space matrices from test data we make use of the following result
from Ho and Kalman’:

The sequence Y, has a finite-dimensional realization if and only if there is
an integer n and constants (&, , a;, .., a,) such that

Ym] = Eaiyn—uj

for all j >0.



ay

Simply put, this mean that there are only n linearly independent Markov Parameters.

To test this result, and as an application to be used later, let us form therNo x c¢Ni

block data matrix
Yk th Yk02 Ykoc-l
Y, Y, Y, ~ Y.
Hg-1y = | 0 e , k21 @1D
_Y ker-1 Ylbr Y, ksrsl T Yloroc-I_

H(k-1) is called a generalized Hankel matrix where No and Ni are the number of

measurements (outputs) and inputs, respectively. In theory, we have the following result
r,lcl‘Togank[H(k-l)] =n

In practice, however, H(k-1) is usually full rank for all values of r and ¢ due to noise.
Eq. (2.11) is composed of pulse response data where each Markov Parameter, of size

No x Ni, represents the response at a particular time instant. Each Markov Parameter

can be partitioned as follows

- -

Yu le o YIM
Y Y.. - Y
Y = .2' 'n 2_"‘ , j=k,k+1,..  k+r+c-2
_yNal ¥, No2 Y, NoMi |

where the first column represents the response at the No outputs due to a pulse input at

the first input, keeping all other inputs at zero. Likewise, the last column is the response

at the No outputs due to a pulse input at the Ni’¢h input, keeping all other inputs at zero.



Notice that the Hankel matrix consists of Markov Parameters that are incremented
equally in the row and column directions. This does not have to be the case but will not
be discussed further.

Eq. (2.11) can also be written in the form

- -
CA¥'B CA*B CA*'B .. CA*’B
CA*B CA"'B CAY’B .. CA**3
HE-1 = | 7 i
-CAkor-IB CAY"'B CAkoroc-JBJ
or more simply as
H(k-1) = VAX'w (2.13)
where
C
CA
V=|ca , W=[B AB A’B - A“'B]
-CA'-I-

V and W are the discrete observability and controllability matrices and are of sizes
rNoxn and nxcNi, respectively.
Let us briefly discuss the significance of these two matrices. The state vector in Eqgs.

(2.8) can be succinctly written as

10




u(p-1)
=2
x(p)-A?x(0) = [B AB A’B - A*'B] “‘p_ )| - wu (214
u(0)
for p>0. Eq. (2.14) suggests an important question. That is, can the state be driven
to any arbitrary state from an initial state by a proper selection of the input? We can

then define the following

The system (Eqs. 2.8) is (completely) state controllable if any state can be reached from
any initial state in a finite time interval by some finite control action

(input).

Obviously, this controllability is related to the matrix W . In particular, the solution for
the control action becomes

U, = W, [x(p)-4°x(0)]

where + denotes the pseudoinverse. For the input to affect the state [x(p)], W, has to

be full row rank. The size of W, is nxpNi. If we assume that n> pNi, then there

exists more equations than unknowns and a least squares solution can be performed, in
which case it is not possible to exactly reach an arbitrarily selected state because an error

term will always exist (i.e. we can only minimize the error term). However, if we

assume that n< pNi, then although a non-unique solution for n< pNi exists, we can

exactly reach the state. Therefore, p 2 integer [%‘] and because W, has to be full row

rank, the state is controllable if rank[W ]J=n. A physical interpretation of this is that



there are n basis vectors of W, that span the set of controllable states.

To examine observability, consider the output from Eqgs. (2.8). The observability

matrix is

C
CA

2
v, =|ca

CAr!

and must be full column rank. Like controllability, we can define the following

The system (Egs. 2.8) is (completely) state observable if the knowledge of the
input (k) and the output y(k) completely determines the state x(p) where 0<k<p.

From Kalman’s duality theorem'?, the corresponding statements for observability follow
from the pi’éi/iﬁui controllability discussion. That is, the state is observable if
rank(V.] = n.

The concepts of observability and controllability play an important role in system
identification. This is important because it can be shown that a minimum realization
exists if and only if a system is observable and controllable'’.

It is now necessary to condense the Hankel matrix in Eq. (2.11). The three most
common data reduction algorithms are least squares, transformations, and coherent
averaging'2. We will consider only the transformation algorithms, in particular, the

singular value decomposition (SVD). Simply put, the SVD allows the determination of

12



the rank of a matrix (Appendix B). The Hankel matrix for k=1 is decomposed as

follows

HO)morem = Prsosrno Dovosms Qemscm
Theoretically, the number of non-zero singular values in D is taken as the rank of VH(O).
Practically, all singular values will be non-zero due to measurement noise, computer
round-off, etc. The problem then is how to select a cut-off. If the singular values
decrease significantly then rank selection is simple. This case is shown by the top graph
of Figure 2.1. The clean data (noise free) represents a three-degree-of-freedom
(order=six) simulation (discussed in section 6.2). Because the system has order six there
should, theoretically, be only six non-zero singular values. The non-zero singular values
beyond six are due to round-off errors. If, however, they transition smoothly (which
almost always occurs for real data) one is at a loss, as shown in the bottom graph of
Figure 2.1. This noisy data was obtained from simulation results on the SC-7
configuration of SSF (discussed in chapter 9). Typical rank selection methods include
keeping all singular values above a prescribed tolerance or choosing where there is a
sudden change in slope of successive singular values'?. It should be noted that this rank
will represent only the strong modes (highly excited). ~ There will often be modes

(weakly or not at all excited) which may not appear in the decomposition. Denoting this

rank by n, truncate H(0) such that
HO),norem ™ Prrosn Dasn @ser @19

r

where we have selected the first # columns of P and Q and the first n columns and

13
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rows of D. Hereafter, denote the truncated versions of P,D,Q as P,,D,, Q,.

Equating Eq. (2.15) and (2.13), remembering that k=1

PDQ) = VW (2.16)
There are three natural ways to partition Eq. (2.16). The input normal form is

V=PD,
w=0S

The output normal form is

V=P
W =D0S

The internally balanced form is

V= PD)" .17
W = D27 '

It has been shown by Juang' that while there is really no essential numerical difference
between the three forms, the internally balanced form is slightly better conditioned and
will therefore be used in this development.

From Egs. (2.13) and (2.17), we immediately have

C = ENaV = EM)PMI)':,2

B = WE, = D,’QJE,,

E,, and E,, are selection matrices and denote

15



Ev = [l O Oy ~ Ou) (NoxrNo) —,  Ey = |0y (cNix Ni)

where 0,, and 0,, are zero square matrices. These matrices are used as a notational
device rather than computationally. The A matrix may be obtained from Eq. (2.13) with

k=2
H(l) = VAW

Since V is full row rank and W full column rank
A= (VIVY'VTH(HYWT(WWT)!
But making use of the orthogonality of V and W and Eqs. (2.17)
(VTV)'VT = (0,"P[P,D,")'D,* P = D]
wr(ww") = 0,D)*(D)*070,D,")" = 0,D;""
Therefore,

A = D;*PTH(1)Q,D,"”

and a minimum realization (of order n) exists and is given by

C =E_PD)

No® n
A = D;'*P]H(1)Q,D;"” (2.18)
B = D,"Q,E,

An eigendecomposition on the discrete matrix A such that

16

Ll



Ay = 92
allows for the determination of the discrete eigenvalues located along the diagonal of the

z matrix. Transform the discrete eigenvalues to continuous space by

, = ) i=1,..,n

’

if k=1 is used in Eq. (2.11), Re(\)) = -f,w, and Im(\) =w, = w.“/l -8 5 w,, isthe

damped natural frequency. The system natural frequency and damping are then

w"i = |R,|
~Re(\)
H= ——
w
Ry
where | | denotes magnitude. The output and input mode shapes (usually referred to

as mode shapes and modal participation factors, respectively) can then be determined
from Cy and ¢'B. This is the formulation of the ERA. Free-decay, instead of pulse

response data, can also be used in the Hankel matrix since it can be shown that they have
the same structure as the Markov Parameters.' In summary, the computational steps are
1) Obtain pulse response or free-decay data
2) Form Hankel matrices H(0) and H(l); Eq. (2.11)

3) Perform the SVD on H(0) and truncate keeping only the
significant modes; Eq. (2.15)

4) Compute {A, B,C,D}; Eqs. (2.18). If using pulse response, D obtained from
first Nith columns of Y matrix. If using free-decay, D does not exist

17



III. FORMULATION OF OBSERVER/KALMAN IDENTIFICATION (OKID)

The following formulation parallels the development presented in Ref. 8, We start

with the familiar state-variable equations,

x(k+1) = Ax(k) + Bu(k) .
yk) = Cx(k) + Dutk) ’ k=0 (3.1

Assuming that this system is initially at rest (x(0)=0), the input/output histories can be

represented in matrix form as

yNa.rl = YNale UMI:I (3'2)
where

y = [y0 y) - ya-n)]
Y = [D CB CAB - CA'™B]

w(©0) u(l) u) - u(l-1)]

u() u(l) -~ u(l-2)

U - u© - u(l-3)

i t u(0) |

Y represents the pulse response matrix (whose block elements are known as Markov
Parameters) and is of dimension No x Nil where / is the number of data points, y is

the known output data matrix, and U is the known input data matrix in upper block

triangular form.

A comment should be made regarding Eq. (3.2). For a full rank input data matrix
U, Y can be solved from Eq. (3.2) for m=1 since the number of equations is equal to

the number of unknowns. A number of problems quickly arise with this course of

18



action. The size of U would be considerable since a large I is usually required for
»good’ identification. This presents computer memory limitations. Furthermore, if
sufficiently rich inputs are not used, U" bécomes ill—condiiii;tied; And la;tly,;me in}ixt
may be inadéquate >to‘ idehtify ail the stfuctural rn‘ur)des regardless of the number of
outputs. For m>1, Y will not be unique, whereas it is known that it ﬁ\ust be unique
for a finite-dimensional linear system. That is, we cannot know the solution for Y out
of an infinite number of solutions.

If we assume that A is asymptotically stable, that is, A*~0 k=p, then Eq. 3.2)

can be written as

U 3.3)

ind M@+l £

yNnxl YNox Mp+l)

where
y = [y© yay - ya-1]
Y = [D CB C4B - CA*'B|

—u(O) u(l) u) -~ u@P) - u(l—l)w

w0 u(l) -~ u@-1) -~ ud-2)
U = U@ -~ up-2) -~ ud-3)

! w0 -~ u(l-p-1)

We realize that as p increases the approximation in Eq. (3.3) becomes more exact.

Unfortunately, a large p is required for lightly damped structures. We now face the
same problem we had in trying to solve for Y in Eq. (3.2), namely, the large size of U.
This dilemma can be solved, however, if we feed the output to the state equation. This

19



will transform the state in Egs. (3.1) to what appears as an observer state. An observer
determines state estimates from a dynamic system for the state of another system. Eqgs.
(3.1) can then be solved because it will artificially increase the system damping due to
the arbitrariness of the observer gain. The observer model is constructed from Egs. (3.1)
by adding and subtracting a state term, Gy(k), where G is

the observer gain, to give

x(k+1) = Ax(k) + Bu(k) + Gyk) - Gy(k)
YO = Cx®) + Duk)

or by substituting y(k) from the above equation

x(k+1) = Ax(k) + Bu(k) + G[Cx(k) + Du(h)] - Gyk)
= A+ GOxk) + (B + GD)u(k) - Gy(k)
Now introduce the following notation

A = A+GC

B = [B+GD, -G
u(k)
wk) =
y(k)
to yield the linear observer model
Mo = Al B 6.4
y(k) = Cx(k) + Du(k)
The matrix representation of the input/output histories of Eqs. (3.4) is
Y | (73.5)7

Yhoxt = Taoy [ +Nox-1) + ] V[(MoNo)a-!) xM]x1

where
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y = Do) y) y@ - ya-1)]
Y - Ip GB CiB - ca''B]

"u(0) u(l) u(2) - u(-1)]

w0 W1) - wi-2)

V = w0) - wi-3)
L

b v(o) -

that A is asymptotically stable, A0 k=p, then Eq. (3.5) becomes

yqxl = qu[(moq)pom] V[(moq)puu]xl

y = [y0) w1 y@ - y@-1)

Y = [D CB CAB - CA""B]

u0) u(l) u - u(p) u(l-1y 7
vio) W) - wp-1) - wl-2)
W) - wp-2) - wI-3)

i W0) - w(i-p-1)]
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Y will be referred to as the Observer Markov Parameter matrix because it is the matrix
of Markov Parameters of an observer system. Note that the size of V is even larger than

U because we have included the outputs in the input matrix. As before, if we assume

(3.6)

The next objective is to compute the system Markov Parameters from the Observer

Markov Parameters. Since Y, = CA*'B, let ¥, = CA'" B and define the following



Y=Y, Y Y, Y,]=[D CB CAB - CA"*B|
Y=[t,Y ¥, ¥,]=[D cB c4B - ca"’B|
e[f0. 50 . kel
Then, the relationship between the Obéeﬁer Markov Parameters and the system Markov

Parameters can be shown to be*

-— k —
Y, =YY" + T r2y,
[ 4 [ ; i k- , kal (3‘7)

Y=Y, =D
Note that for k2p+1, -l—’, and therefore -};,‘“’ and }ka) are considered to be zero.

Therefore, Eqgs. (3.7) can be written as

-— k —
Y, = YO+ ¥?r, . k=l,..p
! (3.8)

P
Yo=Y Y%, ,  k=psl,., o

i=1
Observe from Egs. (3.8) that by the choice of p, there will be only p independent

Markov and Observer Markov Parameters and consequently the maximum system order
is (No)p (see Eq. (2.11)). Solve Eq. (3.6) for Y and use Eqs. (3.8) to recover Y. It

is important to realize that the inputs and outputs must be as linearly independent as

possible to prevent any numerical ill-conditioning of the V matrix in Eq. (3.6)." A state

space model, (4,B,C,D), may then be realized from the sequence Y, using ERA’.
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IV. FORMULATION OF GLOBAL-LOCAL OKID (GLOKID)

4.1 Introduction

: Ithas been shown thatrthe: QKID uses general input/output data to compute the pulse
response of an asymptotically stable observer. The Markov Parameters of the original
system are then determined recursively from the Markov Parameters of the observer
system from which a realization can be obtained. However, this method may have
difficulties if a limited amount of data is available for the identification process and
limited capability to perform repeated experiments. This will be true of orbiting
structures such as the Space Station. Also, since these vehicles are becoming more
complex, e.g., high modal density, it may be necessary to use many outputs and inputs.
In addition, spatial information may be lost if not all the measurements are used and
there may be numerical ill-conditioning problems when the measurements are not all
independent.

Section 4.2 presents a new version of OKID suited for these purposes. This
modified method (GLOKID) considers a subset of outputs from which ’system’
frequencies and damping are obtained. The global mode shapes are then formed by
appending two local mode shapes, one from OKID and the other from a least squares

process on the remaining measurement set (i.e., the set not used in OKID).

4.2 Problem Formulation

GLOKID begins with the premise that only a few outputs should be used for

determination of Y. Letting No*® represent this reduced output set and renaming ! to
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I* where I* is the number of observer data points, then

Y,

No* x [(MONo')px Nl] V[(Mow')px M] x1*

@.1

Ynos x1°
After solving for Y from Eq. (4.1), recover Y and use ERA to realize a state-space
model of the system (4, B,C*,D"). Noé that C* and D" are only valid for No*
outputs and A and B are assumed independent of the number of observations (outputs).

Cand D may be recovered for the remaining outputs (No) by the following algebraic

" manipulations
Yori = Yoom Uwies
[1(0) u(l) u2) - u(-1)]
- - - _ u@© w(l) - u(l-2)
y = [D CB c4B - Ca' uO) - ugl-3)
. u@©) |
[0 u(0) u(l) u2) — u(l-2)]
- _ w0) u(l) - u(-3)
y=Du+C[B 4B - A u©0) - u(l-4)
. u(0) |
or
- — | U - -
Yau = 1D €] [U] - b & @2
where
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[0 u0) u(l) u2) - u(l-2)]
WO u(l)y - ud-3)
U = [B AB - A" WO) -~ u(l-4)

u(0) i

Eq. (4.2) can be solved for C and D from

[bd - yur - yu'wuh “.3)
It should be noted that the A matrix must be truncated after the eigendecomposition
process to keep all ’system’ frequencies and damping before evaluation of the C and D

matrices. This truncation can be done by transforming A and B into modal space

A = oAy
B, = ¢'B

where ¢ is the matrix of eiéenvectors of A. lh this form computationai -modes can be
eliminated in a consistent manner. That is, if the 1st row and column of A is deleted
then the 1st row of B, is deleted. Maintaining the same notation after model reduction
we now want to transform A to real block diagonal form."”* This is done to allow the
least squares process to work with real numbers. Let T be the similarity transformation

that makes A real such that
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A, = TAT?
then B, can be transformed to the real form by
7 B, =TB,
Eq. (4.2) can then be used again with A=A, and B=B, to get C and D. Noté that it is
not necessary to perform the multiplication indicated in the U* expression. The columns

of U* can be recursively calculated from
Utk+l) = AU*(k) + Butk) , k=0 4.9
where U*(0)=0,,,. The global C and D matrices can then be obtained from

(c* 1),

Cioen 4.5)

D = VD_.No'xM
DN:uM

In summary, the computational steps are

xR

c-

1) Select sensor subset No * and perform OKID-ERA
2) Transform A and B to real form

3) Calculate U ; Eqs. (4.2) and (4.4)

4) Calculate D and C for the remaining outputs; Eq. (4.3)

5) Append D and Cto C°T* and D*; Egs. (4.5)
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V. CRITERIA FOR MODE SELECTIOI{I

5.1 Introduction

Spurious modes will appear since it is not possible to identify the correct model
order, which necessitates the use of mode indicators. A number of indicators are
available, including modal amplitude coherence’, modal phase collinearity’, consistent
mode indicator'’, extended mode amplitude coherence'®, mode singular value'®, mode
strength ratio', modal monophasicity coefficient'”, and frequency and damping
variance's, to name a few. Only three indicators (mode singular value, modal
monophasicity coefficient, and modal amplitude coherence) are used in this study and are

discussed in sections 5.2, 5.3, and 5.4, respectively.

5.2 Mode Singular Value (msv)'®

The Markov Parameters in modal coordinate form are written as

Y

[le Y"'z Ym] = [CMBM C,AB_ - C,,A"'Bm] é.1)
where

B = , C, =lc ¢ ~¢l

he o

The vectors in B, are 1 x Ni row vectors, C,, contains No x 1 column vectors, and A

is a diagonal matrix of eigenvalues. Consider the first and second terms in Y,
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Y. =C.B, =[c6c] =Y b,

Y, = C.AB, = Y c\b,
i=1

From above, we can conclude that ¥, = 121: cNYh, , k=1,..,1. Therefore Eq.

(5.1) can be rewritten as

Y, = |:E b, Y eNb - Y o\ b,]
el il

i=1

The mode singular value is then defined a§

msv, = flc||B)/(L-IND . i=ln

when [ is sufficiently long. A larger msv means a higher contribution to the recovered
pulse response (Markov Parameters). For obvious reasons, the mode singular value
should be computed only for stable eigenvalues. When normalized by the maximum

singular value msv will range between O and 1.

5.3 Modal Monophasicity Coefficient (mmc)

The following development follows Ref. 17. The mmc begins with the idea of a
monophase mode. That is, a mode that has the same phase (within a multiple of 180°)
at all output points. For example, each output will reach its respective maximum
displacement at the same time. Theoretically, all modes will be monophase if they are

normal. Practically, a mode will be monophase if the damping is light.
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Consider the identified mode shape matrix
& =809,
Let the angle necessary to make ;,‘ real be 6, so we have
6 =6, €%, k=l,,n 62

where ¢, is a real vector and i=y/-1 . However, ¢, cannot be exactly real due to errors

in the identification of & and the fact that «;t is not truly normal. But it is possible to

minimize the imaginary component in a mean square sense.

Let

3

i0
ra,e™

- i0,
¢k = ) rk2e f

i
| 7ge™

where ¢q is the number of outputs. Therefore Eq. (5.2) becomes

1 = )
i,
r.¢€ !

]
{r.,e "¢ s
é Roo1et

"6,
W

The problem can now be stated as follows:
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Find the angle 6, such that

q - 2
J, =Y (lm[rue"’"""]) . k=1,..n

Jel
is minimized.
. aJ,
The necessary condition becomes FT =0, therefore
k
q 2 - —_
2Y" rysin(8,)cos (6,))
tan(26,) = — Zhd ,  k=1,..n
ryy (sin?(6,)) - cos?(6,)))
J=1
but since r,ue‘;“ =X, +1y,
q
2 %9y
tan(20,) = _q..f.l_____ , k=1,...n
; (yuz 'Xuz)

However, there will remain some imaginary components since we can only minimize J,.

To measure this deviation calculate J,, i.e.,
q
J, = E (yt12 + (xkj2 ')’Uz)Sim (0 +x,;y,,sin (20,‘)) , k=1,...n
Jel

Since (1), + (1), is invariant for any orthogonal transformation, we can define a

parameter which measures the degree of monophasicity, namely

I,

—_— , k=1,..,n
), + @),

mme, = 1-

q q
where (I.), =Y xi and (1)), =Y yij. The mmc ranges between 0 and 1, where unity
J=1 J=l
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means a monophase mode and zero means a mode with no phase coherence.

5.4 Modal Amplitude Coherence ()’

The following is taken from Ref. 7. The modal amplitude coherence is defined as
the coherence between the modal amplitude history and an ideal one formed by
extrapolating the initial value of the history to later points using the identified eigenvalue.
The modal amplitude obtained from the Hankel decomposition is

0D 0y = [41 @y 4]
where * denotes complex conjugate transpose and ¢ is the eigenvector matrix. The
idealized modal amplitude history is obtained from
G = (b€, et pt] L ist,,n
where s, ﬂ:presents the continuous eigenvalues and b, are the rows of the control input

matrix. The coherence parameter () for the ith mode is defined as

al. qil

" el

where | | represents magnitude. If v, is unity, the approximate mode matches the
"exact’ mode identified from the data; if it equals zero, the approximate mode is
orthogonal to the 'exact’ _mode. It should be mentioned that it is better to use the
extended mode amplitude coherence and/or consistent mode indicator since y does not

work very well.
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VL. ISSUES IN APPLICATION OF OKID-ERA

6.1 Introduction

Now that we have presented the OKID-ERA method, several questions are raised.

First, how many data points per unknown are required in the least squares solution for the

Observer Markov Parameters? Second, what is a proper p value? And last, what is an

appropriate size of the Hankel matrix? These questions can be answered by considering

the numerical example presented in section 6.2.

6.2 Role of parameters in OKID-ERA
To illustrate the behavior of the OK}D-ERA method as p, [, and size of H(0) are
varied, results from a three-degree-of-freedom system (n=6) will be presented. The

system is a single input/two output (SIMO) case with the following discrete model

A di 0.9856 0.1628 0.8976 0.4305 0.8127 0.5690
= 11 ’ ’
-0.1628 0.9856 -0.4305 0.8976 -0.5690 0.8127

B = [0.0011 0.0134 -0.0016 0.0072 0.0011 0.0034]

.3093 0.0000 0.0000 0.0000 -1.3093 0.0000

a

The displacement response of the system to a random input with standard deviation of 20

[1.5119 0.0000 2.0000 0.0000 1.5119 0.0000:|
1

was generated and corrupted with process and measurement noise having the covariances
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Q = diag[0.0242 3.592 0.0534 1.034 0.0226 0.2279]x10*
R = diag[2.785 2.785]x107

The sample interval is 0.1 seconds. The natural frequencies are 0.261, 0.712, and 0.972
Hz with modal damping of 0.639, 1.01, and 1.30%. The resulting data sequences were

then analyzed by OKID-ERA.

The results are shown in Table 6.1 for varying number of data points per unknown

(I/(Ni +No)p +Ni), p values, and dimensions of the H(0) matrix. It is clear from Table

6.1 that the frequency and damping are poor when the p value is equal to the system
order (=6). This poor identification is expected since the Observer Markov Parameters,

Y,, are not zero for k>p when p is low due to the noise. When p is increased to 2»

(=12), the results improve dramatically except the damping. However, notice that the
results have begun to stabilize when the number of columns of the Hankel matrix are
greater than the number of rows. That is, the frequency and damping do not change

much when the number of columns equals two, three, or four times the number of rows.
The bias in the damping is largely removed when p is set to 5n (=30). Stability with
increasing Hankel matrix size is again evident. When the number of data points per
unknown is increased to four, the damping estimates for mode 1 improve for p=30 as

compared to two data points per unknown. As more data is included in the least squares

process for Y, the recovered Markov Parameters should be better identified.
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Table 6.1 Three-degree-of-freedom simulation results using the OKID-ERA method

_

H(0) Mode 1 ode 2
Matrix

data per freq damp freq damp
| unknown | p | Row Col | (Hz) (%) | (Hz) (%)
2 12| - - - -

24 | - - - -

6 36| - - - -

48 | - - - -

24 24 | 0260 | 347 | 0.724 350 | 0969 | 297
48 | 0.259 | 397 | 0.724 327 | 0970 | 3.20

2 12 72 1 0259 | 392 | 0.724 323 | 0.970 3: 15
9 | 0.259 | 3.88 | 0.724 322 | 0970 | 3.15

60 60 | 0263 | 058 | 0.713 099 | 0973 1.37

120 | 0.262 1.34 | 0.714 1.04 | 0.973 1.41

30 180 | 0.261 141 | 0.714 1.02 | 0.973 1.40

240 | 0.261 130 | 0.714 1.02 | 0.973 1.40

12 12 | 0.322 | 52.84 - - 0.906 | 14.43

24 | 0.312 | 46.55 - - 0.881 | 11.65

6 36 | 0.318 | 46.60 -- - 0.875 | 11.64

48 | 0.319 | 46.60 - -- 0.873 | 11.61

24 24 10259 093 | 0.714 135 1 0975 | 2.69

4 48 | 0.259 1.08 | 0.714 1.37 | 0.977 2.34

12 72 | 0.259 1.11 | 0.714 1.37 | 0.977 2.25
9 | 0.259 1.11 | 0.715 1.37 | 0.977 2.25

60 60 | 0.261 § 0.751 | 0.712 | 0.946 | 0.973 1.43

120 | 0.260 | 0.647 | 0.712 | 0.939 | 0.973 1.40
30 180 | 0.260 | 0.616 | 0.712 | 0.939 | 0.973 1.40
240 | 0.260 | 0.600 | 0.712 | 0.939 | 0.973 1.39

II exact 0.261 | 0.639 | 0.712 1.01 | 0.972 1.30

-- indicates negative damping or unidentified mode
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To see this consider Figure 6.1. The Markov Parameters for p=30 are compared for two,

three, and four data points per unknown. It is clear that the Markov Parameters from
three and four data poinfs per unknown are almost identical. While ihe Markov
Parameters for t\;'o data points per unknown is different from the others, it cpntains the
essential characteristics, namely, proper phaser and frequency.

In summary, the following can be concluded:

1) Frequencies are identified first while damping is more difficult

2) The p value should be 4 or 5 times the number of modes
and Nop needs to be at least >n

3) A Hankel matrix size whose number of columns are twice the
number of rows give acceptable results. That is, it may not be
computationally feasible to use three or four times the number
of rows when model order is high or for a system with multiple
inputs and outputs

4) Two data points per unknown to determine Y give acceptable results.
As stated in 3), it may not be feasible to use three or four data
points per unknown o
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Markov Parameter Y11 p=30
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Markov Parameter Y21 p=30
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Figure 6.1  Markov Parameters for varying number of data points per
unknown
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VIL SC-7 Test Structure

The test structure SC-7, shown in Figure 7.1, represents an intermediate configuration
of the SSF. This structure is particularly important since it is the first man tended

configuration.

s
/] u' ‘
__..‘ﬂ.\ o\ o S R
aanal e g
"’Jvn‘-’i"'}'a"5“-~'5!.‘{:;‘?\\;
Fo e =a e ALY
—— l &

-

Figure 7.1 SC-7 configuration of SSF

The mass properties of the model are shown in Table 7.1.
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Table 7.1 Mass properties of study configuration

“ Weight (1bs) 261129
X -10.8
Center of
mass (in) y 267.4
z 71.7
Ixx 237 x 10°
lyy 41.1 x 10°
Izz 246 x 10°
Mass
Moments Ixy 0.90 x 10°
of Inertia 6
I 0.46 x 10
(Ib-sec*-in) Xz X
Iyz 26.7 x 10°

The SC-7 model consists of 207 modes (including the six rigid body modes) between
0 and 5 Hz. Figure 7.2 displays the frequency distribution. Modal damping of 1% was
used for all modes. Of the 207 modes, only thirteen were selected as target modes'® to
provide a guide for the MIE design. The selection criteria'® was as follows

1) All modes which could not be identified in a ground vibration test
were included ,
2) The first and second truss bending modes in the XY and YZ planes and
the first torsional mode were included
3) Use of the following indicators
a) Kinetic energy distribution
b) Kinetic energy maximum values and location
c) Percentage of kinetic energy in truss
d) Ratio of maximum truss deflection to maximum
deflection of whole structure
¢) Engineering assessment using MSC/NASTRAN and
MATLAB truss mode shape plots
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Figure 7.2 SC-7 frequency distribution

The thirteen targét modc's are shown in Table 7.2. The SSF (and SC-7) will use the ACS
(Attitude Control System) and rcbqost thrusters for attitude control and reboost operations,
respectively. These thrusters are located on the two propulsion modules seen in Figure
7.1 (the two boxes near the PV arrays).

Acceleration responses were generated at 61 points on the structure (Figure 7.3) from
eight excitation locations (ACS thrusters only; Figure 7.4). Tables 7.3 and 7.4 list the

excitation and response grid points with their corresponding directions, respectively.
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Table 7.2 The thirteen target modes

freq &mp1

ﬂ (Hz) (%)

u 0.5316749 1.00 H

I, 0.5669868 1.00 H
0.7922026 1.00 ﬂ
0.8239532 1.00
0.8604512 1.00
1.133711 1.00 H
1.222703 1.00 Il
1367187 | 1.00
1.465167 1.00
1.502680 1.00 41
1.741080 1.00 u
2.029699 1.00
2.085652 1.00

X,Z ACCELEROMETERS
X,Y.Z ACCELEROMETERS
X ACCELEROMETERS

Y ACCELEROMETERS

Z ACCELEROMETERS

dbvue

266010

Figure 7.3 SC-7 measurement grid points
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~ Figure 7.4

—

o 232823

truss

232922

232023 t

SC-7 excitation grid points

Table 7.3 Excitation locations (ACS thrusters) and directions

" excitation direction
f location
| 232820 X
| 2328222 x |
232922 (3) X
232922 (4) x
232823 (5) z
232923 (6) 2
232823 (7) -y
232923 (8) [y |

() identifies input no.
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Table 7.4 Measurement locations and directions; ( ) identifies output no.

measurement direction measurement direction
location location
F 12207 (1) x 243010 (31) x
F 12207 (2) y 243010 (32) z H
12207 (3) z 248251 (33) x I
231010 (4) x 248251 (34) y
231010 (5) z 248251 (39) z
231040 (6) x 254010 (36) X
231040 (7) z 254010 (37) z
233010 (8) x 254040 (38) x
233010 (9) z 263010 (39) x
233040 (10) x 263010 (40) z
233040 (ll)i | 2 263040 (41) x
234010 (12) x 263040 (42) z
234010 (13)7 z 266010 (43) x
234040 (14) x 266010 (44) z —“
234040 (15) z 266040 (45) x
243040 (16) x 298124 (46) y
245010 (17) x 830021 (47) y
245010 (18) z 831231 (48) z
245040 (19) x 832235 (49) z
245040 (20) z 840021 (50) y
H 257010 (21) x 84125] (51) z
257010 (22) z 842235 (52) z
257040 (23) x 920845 (53) x
232010 (24) x 400207 (54) x
r 232010 (25) z 400207 (55) z
r 232040 (26) x 400241 (56) x
[ 232040 (27) z 400241 (57) z 4
232922 (28) X 400404 (58) 7 x
232922 (29) y 400404 (59) z J
H 232922 (30) z 400407 (60) x II
400407 (61) z n

L
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VIIL MODELING OF INPUT FORCE

8.1 Excitation Design

This section was extracted from the work performed by McDonnell Douglas Space
Systems Company (Ref. 18). The objective of the input force is to provide the proper
excitation to the SC-7 structure so that the measured acceleration responses will be
sufficient to identify the thirteen target modes. In orbit, the excitations will be produced
by 'on-off’ commands to the ACS and reboost thrusters. The ACS and reboost thrusters
produce a steady state thrust of 25 and 50 Ibs, respectively, with a minimum on-off time
of 0.1 and 0.2 seconds. In this study, the ACS thrusters will have an on-off time of 0.2
seconds. However, because these thrusters operate as a blow down system they actually
have a variable thrust which ranges from 25 to 9 Ibs and 55 to 30 Ibs for the ACS and
reboost thrusters, respectively. The propulsion modules (which contain the thrusters)
therefore have to be replaced periodically. The MIE should then be performed soon after
replacement in order to make use of their full force capability (i.e., 25 Ibs for ACS jets
and 50 Ibs for reboost jets).

The excitations will be in the form of randomized pulses which are tailored to excite
the lower frequency modes during the earlier portion of the excitation pulse train and the
higher frequency modes during the later portion. This arrangement excites the higher
frequency modes just prior to the free-decay period, which typically decay quicker. Four
sets of linearly independent random forcing functions (RFF) were generated to enhance
the ability to identify closely spaced modes and are denoted herein as RFF1, RFF2, RFF3,

and RFF4.
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Each excitation (consisting of eight inputs) was designed such that it

1 does not continually excite a given frequency

2) maintains SSF within attitude and attitude rate
limits (less than five degrees and 0.02 degrees
per second, respectively)

3) does not exceed acceleration or load limits

4) provides a minimum modal response of one
hundred micro-g for the target modes

The excitations represent five cycles of the lowest important mode (0.532 Hz) with a
minimum of twenty seconds in order to provide an adequate number of pulses for exciting

the lower frequency modes. A typical simulated ACS excitation is shown in

Figure 8.1
60
50F i
40}
% 3ot
- - - u "I — ]
20} {
10+
o i 4
0 5 10 15 20 25
time (seconds)

Figure 8.1  Simulated ACS excitation for input 8 of RFF1
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8.2 Ramped vs Unramped Input

The unramped input shown in Figure 8.1 cannot be used in MSC/NASTRAN to
perform a transient analysis because of a warning against the use of discontinuous
excitations. A question then arises as how to model this type of input such that the
response from this new input will agree with the response from that which would have
been generated with the original input. The model also has to preserve the same

charact?ristics as the original input, namely, it must maintain SSF attitude and attitude

rate. A natural choice is to ramp the input making sure to preserve the area under the
curve as shown in Figure 8.2.

30

20f

15¢ {

force (Lbs)

10} /

Figure 8.2  Ramped (dashed) and unramped (solid) input
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The next question is what rise and fall time to use. It is assumed that the rise and fall

times are the same and designated T,. Tanner (private comm.)" showed that rise times

of 0.01 and 0.02 produced no significant acceleration response differences while 0.04

showed some difference. T, was then selected as 0.02. The format for this ramped input

is as follows. If an 'on’ command was given at 1.2 seconds, for example, the force
would be zero at 1.2 seconds and 25 lbs at 1.22 seconds. With an ’off” command at 1.4
sécbnds, the same 0.02 seconds would be required before the force *decayed’ to zero, i.e.,
thé fbrcé is 25 Ibs at 1.4 seconds and zero at 1.42 seconds. To produce a 50 Ib force the
rise time should be the same as the rise time for the 25 Ibs force since in this simulation
the 50 Ibs force was produced from two nearly collocated 25 Ib jets (see Figure 7.3).

A Power Spectral Analysis was performed to illustrate the behavior of this model (a

ramped input with 7,=0.02 for both 25 and 50 Ib forces) to the original input. Figure 8.3

shows the Power Spectral Density of this model and the original unramped input for the
first input sequence of RFF1. The solid line represents the original unramped (or square
wave) input and the dashed line is the ramped input. As can be seen, there is no
difference. This suggests that the ramped input and the original pulse input will excite
the same frequencies. The Power Spectral Densities for all sequences show similar results
and are given in Appendix C. This ramped input was subsequently used in
MSC/NASTRAN to perform a transient analysis. The integration step size was 0.02 for

the first 23 seconds (during the force input) and 0.05 seconds thereafter (private comm.:

Martinovic)®.
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8.3 Zero-Order Hold Input Models

While this new ramped input solved the integration problem, it presents another,
namely, how to represent a ramped input in a zero-order hold format. The reason for this

is that the input must be a zero-order hold since we are usin'g the following discrete

system
x(k+1) = Ax(k) + Bu(k)
One approach is to disregard the rise and fall time and represent the ramped input as an
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unramped input (or in the other words, as the original pulse input). Another approach is
to preserve the impulse (area) during one sampling interval. Table 8.1 shows the
numerical differences between these approaches assuming the force goes from 0 to 25 Ibs

on the rise and from 25 to 0 Ibs on the fall.

Table 8.1. Non-impulse and impulse preserved inputs

B zero-order hold input formats 1
I model A model B
(impulse not preserved) (impulse preserved)
?:::) Force (Ibs) Force (Ibs)
| o 00 0.0
o2 25.0 2.5
03 - 25.0 25.0
k 0.4 | 25.0 25.0
0.5 25.0 25.0
| o6 0.0 2.5
| o7 0.0 0.0

The reason for the decrease in force for the second mb&él iS that the force is not 25 lbs
at 0.2 seconds but 25 lbs at 0.22 seconds. Both input formats were used separately in an

OKID-ERA analysis. Results will be shown with a p of 4, [ of 568, and a Hankel

matrix size of 244 x 248. Table 8.2 compares the number of identified modes from both
models for RFF1c, RFF2c, and RFF4c. RFFlc, for example, refers to noise free (clean)
acceleration responses using the RFF1 input sequences. This designation will be used

throughout this study. Similarly, RFF1n is polluted (noisy) acceleration responses using
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the RFF1 input sequences. Appendix I gives a discussion of the noise model. The

recovered modes are listed in Appendix D. These modes were selected (criterion 1) based
on 1) frequency errors1%, 2) damping error<20%, and 3) mac20.9. The mac is the

normalized correlation coefficient between a recovered and an exact mode shape.

Table 8.2 Number of recovered modes for impulse
and non-impulse preserved

Number of modes
test case impulse non-impulse
preserved preserved
RFFlc 36 37
|F RFF2c 37 36
| Rerc | 36 36

There appears to be little benefit from using the impulse preserved input. In fact,
most of the frequencies are identified to at least two decimal places for both zero-order
hold models. Also, their Power Spectral Densities are similar as seen in Figure 8.4 for
input 1 of RFF1. The complete spectra for all test cases are given in Appendix E. The
non-impulse preserved input for this analysis can therefore be used as a zero-order hold

input in OKID.

49



RFF1 - input 1

T ~T —— -

104

Lot 1 1111

4.

108

oot LA AALL

PSD, Lbs*2/Hz

102

LR ARL!

L

lo] 4 [l ' i i
0 0.5 1 1.5 2 25

w
w
h
&k
P
7
W

frequency (Hz)

Figure 8.4 PSD of impulse (dashed) and non-impulse (solid) preserved input

8.4 ’Exact’ Thruster Input

The above analyses are not realistic in the sense that the actual input will neither be
ramped nor square wave. A typical thruster firing exhibits a rise and fall time where the
fall time will be longer than the rise time (private comm.: Popp)?. Also, there will be
fluctuations in the force once the force reaches it nominal operating state (i.e., 25 lbs for
the ACS jets). In addition, the force does not go to zero as soon as the thrusters are

turned off. Figure 8.5 shows a result from an actual ACS thruster ground calibration test
firing. ™
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Figure 8.5 Actual ACS thruster input

The horizontal axis plots time (0.05 seconds per block) and the vertical axis plots
chamber pressure (psia). The large peak represents the engine running roﬁgh with
spiking. Normally this spiking would not be seen. While Figure 8.5 represents pressure,
the thrust should be in proportion. Acceleration measurements from this input should be
obtained to determine if the different zero-order hold inputs (section 8.3) affect
identification accuracy. That is, the issue is whether the ’on-off” times with a square
wave are a reasonable assumption or will the rise and fall time have to be modeled.
Before the integration could be performed, the actual thruster input had to be modeled.

Rise and fall times of 0.03 and 0.25 seconds, respectively, with a random fluctuation of
+3.7% of the force at steady state were calculated from Figure 8.5. The fall time here

is taken as the time it takes to fall to 1% of the steady state force.

Several models were investigated to represent the rise and fall time. They were the
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polynomials, exponentials, and hyperbolic tangents. The polynomials (n>0; n=order) and
exponentials were rejected on tl{;ﬁtr'irs:ehbccausc they did not adequately model the rounding
of the top left corner of the pulse in Figure 8.5. The hyperbolic ﬁngenw and exponentials
were rejected on the fall bcc#usc no rounding was seen at the top right comer of the pulse
in Figure 8.5 and they did not exhibit the 'right amount of decay’. The hyperbolic
tangent and the polynomial (n<0) were finally selected to model the rise and fall,
respectively. Again, the reason for having to model the thrust is that it will not be
measured.

During the rise the force was modeled by a hyperbolic tangent function of the form
F(®) = Atanho(r-1))+B

where

rise

t,=t, +
a =150
The fall was modeled using an inverse square power law of the following form

C

F() = —————
® (t—t‘ﬂ+8)2

A,B and C, 8 are determined from the initial conditions G.e., ¢, F, and t,+T_ , F,
and t,, F; and t,+T,,, F,, respectively). Table 8.3 compares selected values of this

input model to actual data. As seen, the model agrees quite well with experiment.
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Table 8.3. Input model vs experimental data

experiment model
time (sec) Force (Ibs) Force (lbs)
0.00 0.00 0.0 l
rise 0.01 4.63 438 |
0.02 20.37 20.62 I
0.03 25.00 25.00
0.30 25.00 25.00 i
0.31 13.90 13.52
fall 0.32 8.30 8.50
0.33 4.60 5.80
0.40 0.93 1.18
| 046 0.46 0.55 jl

A transient analysis in MATLAB, a matrix manipulation program, was performed

with this input using a constant step size 4th-order Runge-Kutta routine. The ’on-off’

commands were obtained from RFF1. The integration step size was 0.002. Note that the

input had a random error of £3.7% of the force at steady state. An OKID-ERA analysis

was performed on the clean data using both an impulse and a non-impulse preserved

input. Since it is not possible to have an exact representation of the input, an input with

no random error was used as the idealized input. The impulse preserved input was

obtained from the idealized input and the non-impulse preserved input was the same as

model 1 as discussed in section 8.2. The area for the impulse preserved input was
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using the thruster model above and the area was summed every 0.1 seconds. Power
Spectral Densities were compared for both these inputs. Figure 8.6 depicts the spectra

for input 1 of RFF1.
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Figure 8.6 PSD of impulse (dashed) and non-impulse (solid) preserved input

The results for all forcing functions are given in Appendix F. It is seen that the impulse
preserved input shows no significant difference in spectral content to the non-impulse
preserved input. We therefore expect that both inputs will perform equally well in the
identification process as was seen in section 8.2. However, these two inputs are diffc{ent

since the non-impulse preserved input will have a zero force when the impulse preserved
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input will not. Using the non-impulse preserved input in the identification process
assumes that the data will be in free-decay bgyond twenty seconds when it is known that,
ir_\itially, there will be no free-decay region as soon as the thruster is turned off. Rather,
a few seconds (1 or 2) should pass before the data can be considered free-decay.

Appendix G lists the recovered modes using criterion 1 (section 8.3) for p=5, | =706 and

a Hankel matrix size of 305 x 616. As shown in the appendix, while thje; imPplse and
non-impulse preserved inputs identified different frequencies (attributed to the difference
in power spectra), most of the modes are similar to at least one decimal place. Overall,
43 modes were recovered from the non-impulse preserycd input and 742 for the impulse
preserved input and because all the impulse preserved spectra are similar to the non-
impulse preserved spectra, it can be concluded that there is no need to preserve the
impulse and subsequently the "on-off’ commands can be used to produce square wave

inputs for the purpose of system identification.
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IX. RESULTS

9.1 Independent Measurement Selection
It has already been mentioned that independent inputs and measurements are required

to minimize the numérical illr-conditioning of the pseudoinverse of the V matrix. To
evaluate the independence, an SVD was performed on the inputs and outputs. As seen
in Figure 9.1, the eight inputs are indeed independent since the maximum condition
nﬁmber for RFF1, RFF2, and RFF4 is 1.82. The ouiﬁuts, however, are not independent
as shown in Figure 9.2. That is, the noisy data deviates from the clean data somewhere
around 30 outputs, which suggests that the noise dominates beyond at least 40 outputs.
The reason why we say all the measurements are not independent is as follows. The rank
Vofj the mcasﬁrement matrix does not change very much past, say, the 40th singular value.
This would suggest that only 40 outputs are independent and the remaining 21 outputs
are dependent. RFF1, RFF2, RFF3, RFF4, and RFF1 were concatenated in that order to
generate an input sequence with a forcing time of 100 seconds. The reason for this will
be explained later. This measurement set is called RFF1234n and has outputs which are
not independent, as shown in Figure 9.3. The change in slope of the singular values
suggest that at most 37 outputs are independent for all test cases.

The question, then, is how to select the independent measurements. The Gram-
Schmidt Orthogonalization procedure is used for this purpose. That is, a measurement
matrix (outputs listed row wise) was formed and the output with the minimum correlation
with the other outputs is used as an initial reference (first output) to start the method. A

new measurement matrix (consisting of 60 outputs) was formed after removal of the
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minimum correlated output. The Gram-Schmidt procedure was performed (e.g., removal
of all dependent components of the 60 outputs from the first output) and another
measurement matrix was obtained. The second output then is the maximum magnitude
squared (obtained row wise) of this newr measurement matrix. This output is removed
from the new measurement matrix, all dependent components of the remaining 59 outputs
are then removed from the second output, and the third output is the maximum magnitude
squared. This procedure is continued for all the outputs. Figures 9.4 and 9.5 plots the
output magnitudes. Appendix H lists the ranking of the outputs based on magnitude
squared (normalized by the maximum). A range of output cut-offs in the 30’s is seen for
RFF1n, RFF2n, RFF4n, and RFF1234n, which suggests that those are the only

independent measurements.
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Figure 9.1 Singular value distribution for the eight inputs
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9.2 Variation of Recovered Modes with Number of Qutputs
We should investigate the role of the number of outputs in OKID. Figure 9.6 is a plot
of the total number of recovered modes versus the number of outputs used in OKID based

on a full rank solution of the Hankel matrix decomposition using RFF1234n. The data

length was set at two data points per unknown and p was obtained from ﬂoo'{Nwzg )
o+

100

80

modal indicators
70F . A

criterion 2

number of modes
3

criterion 1

(] 10 20 30 40 50 6 70

_ number of outputs

Figure 9.6 Number of recovered modes

Floor is 8 MATLAB command that rounds to the nearest integer towards minus infinity.

The number 492 was obtained by subtracting eight (the number of inputs) from half of
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1000 (1000 being the forced data length). The first criterion is criterion 1 (section 8.3).
The second criterion (criterion 2), which is less restrictive, identifies all modes with
frequency errors1%, damping error<40%, and mac20.8. In either case, ten to thirty
outputs appear to recover the most modes. Notice that although results are presented for
40, 50, and 61 outputs, they represent increasing dependence (i.c., have no new
information) and should be avoided since they may cause numerical ill-conditioning. In
addition, p decreases as No increases and we expect a poor solution for the Markov
Parameters and consequently less or poor mode recovery.

We now discuss the (*) points in Figure 9.6. The above analysis used the known
answers. A more objective analysis is to truncate the singular values (e.g., to less than
a full rank solution) and use the modal indicators. When the observed order is plotted
versus the number of outputs (Figure 9.7), one sees the order stabilizing by 10 outputs.
Figure 9.7, therefore, suggests that there are only 100 modes in the data. The decrease
in order past 30 outputs is probably, again, due to the measurement dependence. The
singular value distribution of H(0) for 30 outputs is shown in Figure 9.8. The (*) in
Figure 9.8 indicates the location where truncation was performed. This is how the data
in Figure 9.7 was obtained. The rest of the outputs have similar distributions. The points
(*) in Figure 9.6 show the number of recovered modes from the modal indicators after
singular value truncation based on the order given in Figure 9.7. The optimum numbers
are in a range from ten to forty, which is similar to what was obtained with criteria 1 and

2. The difference can be attributed to computational modes that survived the indicator

cﬁtcﬁa (mono20.98 or mono20.9 and msv20.02). This is possible since a mode could
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be monophase but yet not be a true mode.
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All the criteria, however, show the same result. That is, there appears to be an

optimum number of outputs which gives the best results. The reason for this can be

explained as follows. It is known that for noisy data: (1) (No)p>n and (2) p must be

large. If more outputs are used for a fixed data length, then p will decrease. This will

satisfy (1) but not (2). If few outputs are used then (2) is satisfied but not (1). There

will therefore be a point where both (1) and (2) are optimally satisfied.

9.3 Global-Local OKID Validation

Now that we have established an optimum number of outputs, let us discuss the
Global-Local method. Mode shape information will be lost at the other locations if one
uses only the independent outputs in OKID. However, there are numerous methods that
can be used to solve this dilemma. One approach discussed in this section and already
mentioned in section 5 is Global-Local OKID. The remaining methods will be discussed
in section 9.5.

There are two natural ways to solve for the D and C matrices in GLOKID. Section
5 presented one method (call it the appending method). Simply put, this method uses the

identified D and C matrices from OKID, i.e., D,,,, and C,,,,, and appends them to the

D and C from the least squares solution for the remaining sensors (the sensors that were

not used in OKID). The global D and C matrices then become
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D - [DOKID} ’ C - [COKID]
D, Ci

Another method (call it the entire method) is to use the entire data set to recover D and

C for all the sensors. Obviously, the appending method is computationally more efficient
than the entire method. However, to determine which method produces better results,
consider the case of No=37 , p=11, and /=1006 on RFF1234n.

Table 9.1 presents the results using both methods. The modes were selected using
criterion 1. The fourth column lists the mac for the local mode shapes (No=37). The

fifth and sixth columns list the mac using the entire and appending methods. There is a
significant improvement in mode shape accuracy of the appending method over the entire
method. To visualize this, Figure 9.9 shows the (*) points (appending method) above the

solid line (entire method). The (o) points will be discussed later.
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Entire Appending Entire
method method method-
exact
damp freq ex-freq mac mac mac mac
(%) (Hz) (Hz) (local) (global) (global) (global)
1.0069 0.5670 0.5670 0.9992 0.9840 0.9916
1.0660 0.7455 0.7458 0.9957 0.9470 0.9931 0.9562
0.9997 0.7926 0.7922 0.9943 0.9115 0.9753 0.9442 4
1.1246 0.8060 0.8079 1.0000 0.9858 0.9949 0.9859
1.0252 0.8239 0.8240 0.9941 0.9909 0.9927 0.9947 4
1.0089 0.8604 0.8605 0.9346 0.9328 0.9496 0.9608 H
0.9913 0.8966 0.8967 09142 0.7463 0.8986 0.7517 "
! 0.9905 1.1338 1.1337 0.9999 0.9990 0.9998 0.9991
u 0.9947 1.2228 1.2227 1.0000 0.9998 0.9999 0.9998 ﬁ
1.0096 1.2553 1.2552 1.0000 0.9997 0.9999 0.9997
H 1.0438 1.3220 1.3231 0.9999 0.9765 0.9961 0.97814
0.9862 1.3673 1.3672 0.9996 0.9814 0.9981 0.9820
l 1.0176 1.4651 1.4652 0.9976 0.6700 0.9831 0.6660 ‘H
1.0087 1.5028 1.5027 0.9996 0.9921 0.9994 0.9925
! 0.9629 1.6772 1.6781 0.9487 0.8043 0.9374 0.8170
ﬂ 1.1413 1.7409 1.7411 09125 0.7082 0.9155 0.6815
1.0791 2.2319 2.2330 0.9886 0.7784 0.8814 0.8056
” 0.9729 7 2.2508 2.2515 0.9360 0.4572 0.8850 0.4572 ﬂ
,l 1.0021 2.5889 é.5888 0.9999 0.9977 0.9996 0.9976 H
u 1.0029 2.5889 2.5888 0.9999 0.9977 0.9996 0.9976
Il 1.0055 2.8141 2.8142 0.9999 0.9856 0.9980 0.9860
1.0066 2.9891 2.9887 0.9999 0.9560 0.9890 0.9533
H 1.0009 3.1234 3.1225 0.9993 0.5402 0.9289 0.5466
R 1.0578 3.2775 3.2788 0.9988 0.6529 0.7149 0.6766
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Table 9.1-Continued

1.0144 34731 34725 O.;912 0.6971 0.9200 0.6822 1
0.9780 3.5206 3.5206 0.9957 0.5910 0.9540 0.5546
1.1389 3.6164 3.6180 0.9978 0.9653 0.9794 0.9668 n
1.1360 3.8007 3.8091 0.9984 0.9892 0.9953 0.9887 ||
1.0946 4.4040 43812 0.9850 0.9555 0.9013 0.9686

E 1.1000 4.4502 44531 0.9980 0.5174 0.9666 0.8096 J
1.0807 4.6564 4.6609 0.9954 0.8726 0.9223 0.8900 J

37 outputs in OKID

1 W W"’ - T Ad z T m T
09} 3 . ° h
0.8} ° B s
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- entire set
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* append. °
0.5} o entire set-cxact 4
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frequency (Hz)

Figure 9.9 Global mode shape determination using GLOKID
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An explanation is as follows. Since the mode shape matrix for the sensor subset in OKID
was well identified (fourth column), the global mode shapes from the appending method
should then be well identified. Notice that these mode shapes are generally of lesser
quality than the l&al mode shapcs.rﬁ Thérer are two possible reason'srfor this degradation.
The first is that the recovered frequency and damping values are not exact and have
subsequently affected the least squares procéss. Since the entire method determines
global mode shapes solely from that recovered set, it may be expected to have poor
estimates. The first explanation is highly suspicious because the recovered frequencies
are within 1% and damping estimates are within 20% of their true values. The second
potential reason is that the number of recovered frequencies are more important rather
than the errors in frequency and damping (i.e., since not all system frequencies are
recovered).

To see which explanation is valid, the identified frequencies and damping values were
replaced with their corresponding exact values and the entire method used (call this
method the entire-set exact). If the mac’s are similar to the previous entire method’s mac
then the second reason is more plaursi'ble. Since the mode shapes in the last column of
Table 9.1 are similar to the fifth column, we conclude that the number of recovered
frequency and damping values is more important. This is not to say that the quality of
the recovered frequency and damping is unimportant. Figure 9.9 shows the (o) points
(entire set-exact) closely matching the solid line (entire set) but, in general, the (o) points
are above the solid line.

Now, it may be argued that the degradation in mode shape will not be as severe if




the number of outputs used to extrapolate the mode shape (Now) is less than the number
of outputs used in OKID (the sensor subset), i.e., Noonp>N%,- To see if this is valid

consider two analyses. The first uses the 20 optimum number of outputs with p=18. The
second uses 37 outputs (determined to be the optimal number of independent outputs)

with p=11. Both cases used only the forced response (/=1040). After selection by the

modal indicators all modes with frequency error<1% and mac20.8 were kept, as shown

in Table 9.2. Figures 9.10 and 9.11 show the mac and damping estimates as a function
of frequency, respectively. There does not appear to be any significant difference
between the two in terms of mode shape identification. However, the damping estimates
for the 20 outputs are better than that for the 37 outputs, as shown in Figure 9.11. To

verify this claim, the RMS of the damping for the 20 outputs is 1.1061 while the RMS

for the 37 outputs is 1.2871. The better damping values is due to the higher p value.
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Table 9.2 Modal parameters for 20 and 37 outputs from GLOKID

37 outputs
damp freq mac damp
(%) (Hz) (%)
32116 | 0.1830 | 0.8813 | 1.7939 |
10323 | 05671 | 09995 | 1.0289 | 0.5671 | 09991 | 05670
10188 | 07455 | 09892 | 1.0094 | 07459 | 09747 | 0.7458<H
| 10209 | 07933 | 09762 | 10015 | 0.7929 | 09380 [ 07922 |
[ 1618 | 08058 | 09970 | 11171 | 0.8097 | 0,994 Ho.sms» |
| 11446 | 08230 | 09964 | 10170 | 08243 | 09709 | 0.8240
| 11301 | 10027 | 09722 | 09931 | 1.0029 o.943(ﬂ"{ 1.0033
| 09sss | 11338 | 09999 | 09874 | 1.1336 | 0.9999 | 1.1337
14170 | 11999 | 09976 | 12187 | 1.1956 | 0.9926 | 1.1954
r 09845 | 12228 | 10000 | 09912 | 12227 | 10000 | 12227
10118 | 1.2553 | 1.0000 | 1.0074 | 1.2555 | 1.0000 | 1.2552 |
lx.lsw 13225 | 09997 | 12453 | 13233 | 09992 | 13231 |
1.0162 | 1.3673 | 09995 | 09597 | 13678 | 0.9982 #1.3672
10245 | 14651 | 0.9951 | 10041 | 14653 | 09904 [ 1.4652 H
PI.OlIS 15027 | 09996 | 0.9993 | 15029 | 09990 [ 1.5027
1324 | 1.6040 | 09990 | 09645 | 15982 | 0.9992 | 1.6017 a
F 0940 | 1.6775 | 09543 | 1.0708 | 1.6773 | 0.9672 JL 16781 |
11043 | 20337 | 09839 | 13024 | 2.0336 | 0.9838 | 2.0297
14358 | 2.0995 | 09752 | 1.6590 | 2.1117 | 09119 [ 2.0056
| ot | 2230 | 09755 | 09874 | 22327 | 09466 | 22330
09748 | 22510 | 09434 | 09973 | 22502 | 0935 | 22515
F.ozss 23596 | 09969 | 10045 | 2.3505 | 0.9955 ﬂz.ssm
29910 | 24762 | 09310 | 1.1048 | 24871 | 09627 | 24849
I_l.ooas 2.5889 | 09999 | 10036 | 2.5889 | 0.9999 | 2.5888
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Table 9.2-Continued

e —
1.0042 | 2.8142 0.9994 1.0033 2.8141 0.9990 2.8142
1.0167 | 2.9891 0.9987 1.0043 2.9889 0.9976 2.9887
1.0000 | 3.1233 0.9891 1.0189 3.1228 0.9803 3.1225
1.0534 | 3.2777 0.9320 0.9992 3.2783 0.9258 3.2788
1.0148 3.4735 0.9843 1.0025 3.4739 0.9838 34725
| 0.9771 3.5209 0.9890 0.9716 3.5206 0.9842 3.5206
1.0884 3.6166 0.9911 1.0818 3.6166 0.9887 3.6180
1.0302 3.8048 0.9923 1.2296 3.8029 0.9878 3.8091
1.2540 | 3.9602 0.8213 0.9609 3.9473 0.8335 3.9236
1.1961 4.0411 0.9218 1.2354 4.0429 0.9377 4.0308
14773 | 4.3264 0.9774 1.4070 43199 0.9751 43193
1.1393 | 4.4068 0.8687 0.9099 4.3954 0.9055 4.3812
1.0935 | 4.4506 0.9695 1.1245 4.4503 0.9835 44531
Hl.0828 4.6571 0.9576 1.0247 4.6621 0.9754 4.6609

1
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H
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Figure 9.10  Global mode shapes for 20 and 37 outputs
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Figure 9.11 Damping estimates for 20 and 37 outputs

9.4 Results for Noisy Measurements (RFF1, RFF2, RFF4)

We now investigate the individual test cases, i.e., RFF1n, RFF2n, and RFF4n, for the
total number of recovered modes. RFF3n will not be used due to an error in the input
sequence which invalidated the NASTRAN transient analysis. To compare results, the
ERA method using free-decay data was used. While the ERA parameters were not
optimized they were sct to what was deemed reasonable given the computational

limitations and data length. The modal indicators for the ERA consisted of the modal

amplitude coherence (¥>0.8) in addition to the other two indicators. Table 9.3 presents
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results for 20 outputs using OKID-ERA with 60 and 80 seconds and for ERA using 60
seconds. The Hankel matrix size in ERA was 300 x 600. Observe that the ERA
generally does better than OKID-ERA (60 seconds) in terms of total and target modes,

while OKID-ERA (80 seconds) does somewhat better than ERA in terms of total modes.
This is expected since a larger p can be chosen making the Markov Parameters more

exact. Also, it is clearly seen that ERA recovered more target modes than either the 60
or 80 second OKID-ERA. It should be pointed out that for RFF1n, for example, 8 target
modes were recovered (from criterion 2). The only reason that a five is shown for

criterion 1 is that only five modes satisfied criterion 1. For this analysis, the principal

difference between criteria is that the first selects all modes with damping error<20% and

the second with damping error<40%.

Table 9.3 Number of recovered modes (based on local mode shapes)

Number of modes
OKID-ERA ERA
60 sec. 80 sec. 60 sec. H
test Total | Target | Total | Target | Total | Target ﬂ
cases modes | modes | modes | modes | modes | modes
crit. 1 15 5 14 6 19 9
RFF1
"leie2 | 2 8 24 7 2 10
crit. 1 17 7 18 6 18 8
RFF2n
crit. 2 22 8 26 8 22 10
crit. 1 14 6 21 9 18 9
RFF4n
crit. 2 18 7 24 9 20 9 ||
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Observe also that for RFF1n and RFF2n of criteria 2 and 1, respectively, the number of
target modes decrease with an increase in data length which is contrary to the general
idea that the longer the data record the better the answers. Although more modes were
identified, it was at the expense of losing other modes (in this case a target mode). A

possible explanation is that, in this case, more data means more free decay and hence

more zeros in the V matrix, which may *weaken’ the effect of the forced data and also
produce a poorly conditioned V matrix. This conditioning problem can be seen in the

singular values of the V matrix in Figure 9.12,
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i - 1500 -
10~} . : E
5 < 000 :

I x :
1012 E ) ““lllxlluuunnnnuununuul, 3 é
: Tt — ] P
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singular value number

Fiﬁ“fc 9.12 Singular valucé bf Vrmatrrix for three-degrec-of-freedom
simulation: S AR
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The data was generated from the three-degree-of-freedom simulation discussed in section

6. The rank of the V matrix is 37. The reason for this is as follows. The row dimension
of V is (No+Ni)p +Ni = (No)p +Ni(p+1). Since we have a three mode system (n=6)
and if the data is clean (noise free), then (No)p =n. And for p=30, Ni=1, and n=6 the

rank of V should be 37. Two percent random noise (based on maximum amplitude) was
added to the clean data. The data consisted of ten seconds of forcing and was randomly
generated (unit variance and zero mean). Observe that as the data length in the V matrix
is increased, the singular values show less of a drop at the 37th singular value making it
more difficult to determine the rank. A long forced response followed by a short free-
decay may do better. This was another reason for generating RFF1234n, whose results
will be presented later.

The above results considered a limited number of outputs (and consequently used
local mode shapcs). Table 9.4 presents results for Global-Local OKID. Sixty seconds
of data were used to identify the frequency and damping and local mode shapes and
eighty seconds for the least squares solution for the remaining mode shapes. Two points
are immediately obvious. The first is the relatively poor performance of the ERA method

using all 61 outputs (Hankel matrix size of 244 x 600). This can be explained as follows.

Due to a limited amount of data (60 seconds), ERA has only r block rows in the Hankel

matrix. By using outputs that are not all independent there is a waste of r values. The

ERA method with Keydata' is then one solution since the independent outputs can be put

to better use in the block row repetitions. Also, global mode shape information is not
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lost. The other point is that GLOKID is identifying more modes for RFF1n and RFF2n
for criterion 2 than OKID from Table 9.3. The reason is that while, as stated previously,
the mode shapes from GLOKID are generally of lesser quality, it does not mean that all
mode shapes will be of lesser quality.

It is appropriate now to discuss the results obtained using an increased forced data
length followed by free-decay (i.e., RFF1234n). The forced data may help separate
closely spaced modes while the free-decay may help in identifying low frequency modes.
A measurement of this type may, therefore, be a good approach. But a similar response
can also be produced by concatenating the responses from the individual input sequences
(i.c., RFF1n, RFF2n, and RFF4n). This would have a mixture of forced and free-decay
data throughout the entire data length. Each of the individual input sequences provided

50 seconds for concatenation,

Table 9.4 Number of recovered modes (based on global mode shapes)

Number of modes
GLOKID-ERA ERA ‘
| 60 sec. 60 sec. |
[ test Total | Target | Total
cases modes | modes | modes §
criterion 1 15 5 6
| RFFIN 1 ierion2 | 22 8 7
criterion 1 15 6 7
RFF2n | ritcrion2 | 23 9 1
criterion 1 14 6 7
E RFFAn 1 ceiterion 2 18 7 8
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Results are presented for 150 seconds using 20 outputs and are shown in Table 9.5. The
Hankel matrix size was 520 x 1040 with p=26. The ERA method was also used with

a Hankel matrix size of 600 x 1500 with the data coming from concatenation of 50

seconds of free-decay data from each of the individual input sequences.

Table 9.5 Number of modes for 150 seconds (based on local mode shapes)

o Number of modes
OKID-ERA ERA
Concatenating RFF1234n Concatenating
Total Taréet Total | Target | Total | Target
I modes | modes | modes | modes | modes | modes
criterion1 | 35 | 10 | a1 | 12 | 28 | 9
criterion 2 49 1 47 12 33 10

It is obvious that RFF1234n did better than concatenation and ERA. Also, almost all of
the target modes were identified (0.532 Hz was the only missing taréet mode, primarily
because of its poor mode shape; in fact, this mode was not identified in Tables 9.3 and
9.4). This missing target mode is probably due to using only 20 outputs or the high
modal density. Table 9.6 presents the lowest frequencies from RFF1234n and

concatenating RFF1n, RFF2n, and RFF4n for OKID-ERA.
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Table 9.6 Lowest frequencies from RFF1234n and concatenation

damping | frequency | exact-freq. mac
(%) (Hz) (H2)

3.4198 0.1527 0.1511
1.6929 0.1827 0.1815
3.1632 0.2680 0.2767

41143 | 02892 | 03106

RFF1234n

| Concatenation

Observe that while the damping is poor, the frequencies and mode shape are excellent for
RFF1234n. This would suggest that a long forced data length followed by free-decay
data may give the ’best’ answers although there is probably not much that can be done
about the damping except possibly to increase the data length and/or filter the data.

Filtering the data may help in identifying more of the low frequency modes.

9.5 Methods for Global Mode Shape Recovery e
GLOKID is one method for obtaining global mode shapes. Another method is to use
subset combinations with OKID and then use ERA with Keydata. That is, we remove the
20 most independent outputs from the data (after first use of Gram-Schmidt) and perform
another Gram-Schmidt on this new data, whiéh contains 41 outputs. Select a new set of
20 independent outputs which comprise a second set of data. This leaves only 21 outputs
as the final data set. An OKID analysis can then be performed three times (i.e., using the
first 20 outputs, then the next 20, and finally the last 21) to obtain three sets of Markov.
Parameters. These Markov Parameters can be used in ERA with Keydata where the first

set of Markov Parameters are used in the block row repetitions. A disadvantage of this
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method is that there will be three different frequency and damping estimates, which will
cause a phase distortion iﬁ th§ Hankel matrix. |

To compare these two methods, concatenate 60 seconds from each of the individual
input sequences to get a data length of 1800, The parameters in GLOKID (41 outputs)
consisted of p=31 and 20 outputs (of the most independent) with 1800 points in the mode
shape least squares process for the otﬁer 41 outputs. The subset combination method uf_sedt
a p=31 for the first two OKID runs (each using 20 outputs) and 30 for the last (using 21
outputs). The Hankel matrix size in ERA with Keydata was 601 x 1200 while GLOKID
(41 outputs) used 620 x 1240. It is seen in Table 9.7 that the subset combination method
does better than GLOKID (41 outputs) in terms of total mode recovery. VA possible
explanation for this is that in the subset method each Markov Parameter set should have
good mode shapes since each came from OKID. GLOKID (41 outputs), on the other
hand, has only one set of Markov Parameters coming from OKID. The mode shapes at
the remaining outputs must then be extrapolated using the recovered frequency and
damping. And as discussed in section 9.3, there will be a global mode shape degradation.
The last OKID analysis for the subset method (21 outputs) does have dependent
measurements and therefore the analysis may suffer from ill-conditioning. Two methods
which overcome this problem are presented. The first method (subset with SVD) uses
the identified Markov Parameter set from the two OKID analyses (20 and 10 outputs) and

analyzes the remaining 21 outputs with the SVD of the V matrix (due to computer
memory limitations the SVD was performed on VVT). Then the ERA with Keydata was
used on the three sets of Markov Parameters. The second method (GLOKID (21 outputs))
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Table 9.7 Global mode shape recovery methods using concatenated data (1800 points)

Number of modes

- GLOKID Subset Subset GLOKID
(41 outputs) Combination with SVD (21 outputs)

Total | Target | Total | Target | Total | Target | Total | Target
modes | modes | modes | modes | modes | modes | modes | modes

crit. 1 35 11 40 10 i3 9 37 12
crit.t 2 | 44 12 49 11 40 10 44

is an extension of the Global-Local concept. That is, instead of extrapolating the mode
shapes to 41 outputs, ERA with Keydata is used on the first two Markov Paramcters (20
and 20 outputs) to determine frequency and damping estimates. The mode shapes are
then extrapolaté& to the remaining 21 outputs. Surprisingly, the subsét combination
method glves the best results although GLOKID (21 outputs) identifies the most target

modes A possxble explanation why the subset with SVD did the worst out of all the
methods is because the SVD was pcrformed on VVT instead of V. It should also be

pointed out that the subset with SVD is the most computationally intensive due to the
need for another SVD followed by the subset combination method (since two extra OKID

analyses have to be performed) then GLOKID (21 outputs) and finally, the least

expensive, GLOKID (41 outputs).
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9.6 Observer Decay vs Data Length and Hankel Matrix Size

To verify the rcsulté presented in section 6.2, let us investigate the number of data
per unknown in the least squares solution for the Observer Markov Parameters. Consider
the case where 60 seconds from RFF1n, RFF2n, and RFF4n are concatenated (i.e., data
length of 1800) with the first 20 independent outputs and a Hankel matrix size of 1 to 2
(twice as long as it is tall). Table 9.8 presents results using criteria 1 and 2. Observe that

as the number of data per unknown is increased, less modes are recovered. This is

expected since p and consequently (No)p decrease. Also note that two data points per

unknown give the "best’ results. Although the highest p value is obtained from 1.5 data
per unknown, it gives less modes than two data per unknown primarily because there is
less data averaging. This suggests that two data per unknown does give the optimum for

a fixed data length.

As a final note, let us re-examine the role of the Hankel matrix size. For this
purpose we use RFF1234n with p=18 and [=1040 (both fixed). All test cases retained
200 singular values in the Hankel matrix and are presented in Table 9.9. A Hankel
matrix size of 1 to 3 appears to give the most number of modes. Certainly, the minimum
size is 1 to 2. The actual size, however, depends on the available computational resources

and particular problem (i.e., system order).
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Table 9.8 Total number of recovered modes using OKID-ERA

Number of modes E

S:kt?\ x’:‘ criterion 1 criterion 2
EE 29 39
2 38 49
3 35 42
4 25 36
5 13 23 E

Table 9.9 Hankel matrix size in OKID-ERA

If

H(0) Number of modes
Rows Cols criterion 1  criterion 2
360 | 360 31 36 |
720 k)| 40
1080 KAl 43
E 1440 35 43
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X. CONCLUSIONS

It has been shown that an optimum number of outputs exist in OKID which give the
best results in terms of modal recovery (frequency and damping estimates). This is due
to the fact that for a fixed data length there is a point where the values p and (No)p are
both optimal. In addition, not all of the noisy measurements were found to be
independent. This is important since OKID requires the measurements to be as linearly
independent as possible to minimize any numerical ill-conditioning. Therefore, an
independent output subset was obtained from a Gram-Schmidt Orthogonalization
procedure. For the SC-7 simulation, 20 out of the 61 outputs were sclected as this
subset. However, mode shape information was lost at the remaining 41 measurement
locations. To overcome this difficulty, a new version of OKID, called Global-Local
OKID (GLOKID), was developed. This new method uses the identified frequency and
damping from OKID using an independent output subset and determines the local mode
shapes for the remaining outputs (i.e., the outputs that were not used in OKID) using a
least squares process. The global mode shapes are then obtained by appending the
identified local mode shape from the least squares process to the other set of local mode
shapes determined from OKID. GLOKID is shown to identify the global modal
parameters.

In addition, there were several issues in the use of OKID. The first was the number
of data points per unknown in the solution for the Observer Markov Parameters. Two
data points per unknown was found to give adequate results for the noise level in the SC-

7 simulation. Obviously, if the noise level were much higher than more data points per
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unknown are required. Another issue was the accuracy of the input force on the
identification process since the forces on the SSF will not be measured. Two models
were used to test the accuracy. The first model was a square wave input obtained from
the *on-off” commands to the ACS thrusters. The second model used the rise and fall
times from an actual ground calibration test firing of an ACS thruster. Overall, it was
determined that both models identified the same total number of modes. And since the
power spectra for both models were similar, it was concluded that the *on-off’ commands
to the ACS thrusters can be used to create a square wave input for the purpose of system
identification.

As an observation, a Hankel matrix size whose columns are twice the number of
rows gave acceptable results. Of course, the more data that is included in the Hankel
matrix the better the modal identification, especially for the damping estimates. This was

particularly evident for the three-degree-of-freedom simulation that was considered.

Also, a long forced response followed by free-decay is suggested for modal

identification. The forced response may help in separating closely spaced modes while
the free response may help in identifying low freqpe_nc;y modes. This type of excitation
will also minimize the poor conditioning of the input-output matrix (V) in OKID by

reducing the number of zeros.

84

i

11

i T

R

S e

i



REFERENCES

1. Widrick, T. W., "Determining the Effect of Modal Truncation and Modal Errors in
Component Mode Synthesis Methods,” M.S. Thesis, Dept. of Civil, Mechanical, and
Environmental Engineering, George Washington University, Hampton, VA, July 1992.

2. Denman, E. D. et. al., "Identification of Large Space Structures on Orbit," ASCE
Report, No. AFRPL TR-86-054, New York, NY, September 1986.

3. Pappa, R. S., "Identification Challenges for Large Space Structures,” Sound and
Vibration, Vol. 24, No. 1, April 1990, pp. 16-21.

4. Kim, H. M. and Doiron, H. H., "Modal Identification Experiment Design for Large
Space Structures,” AIAA paper No. 91-1183, 1991.

5. "Microgravity Performance Analysis Report,” Contract No. NAS 9-18200, MDSCC,
Houston, TX, March 1993.

6. Juang, J. N. and Pappa, R. S., "A Comparative Overview of Modal Testing and
System Identification for Control of Structures,” Shock and Vibration Digest, Vol. 20,
No. 6, June 1988, pp. 4-15.

7. Juang, J. N. and Pappa, R. S., "An Eigensystem Realization Algorithm for Modal
Parameter Identification and Model Reduction," Journal of Guidance, Comtrol, and
Dynamics, Vol. 8, No. 5, Sept-Oct. 1985, pp. 620-627.

8. Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W, *Identification of
Observer/Kalman Filter Markov Parameters: Theory and Experiments,” NASA Technical
Memorandum TM-104069, March 1991.

9. Ho, B. L. and Kalman, R. E., "Effective Construction of Linear State-Variable
Methods from Input/Output Data," Proceedings of the 3rd Annual Allerton Conference
on Circuit and System Theory, 1965, pp. 152-192.

10. Kalman, R. E., Ho, Y. C., and Narendra, K. S., "Controllability of Linear
Dynamical Systems,” Contributions to Differential Equations, Vol.1, No. 2, 1962, pp.
189-213.

11. Kalman, R. E., "Mathematical Description of Linear Dynamical Systems,” SIAM
Journal on Comtrol, Vol. 1, 1963, p. 152-192.

85



12. Allemang, R. J. and Brown, D. L., "Modal Parameter Estimation Space Station
Structural Characterization Experiment, " Structural Dynamics Research Laboratory,
University of Cincinnati, December 1989.

13. Juang, S. Z., "Equivalents of Some System Identification Methods That Use Finite
Hankel Matrices,” M.S. Thesis, Dept. of Civil, Mechanical, and Environmental
Engineering, George Washington University, Hampton, VA, March 1992.

14, Phan, M., Juang, J. N., and Longman, R. W., "On Markov Parameters in System
Identification,” Proceedmgs of the 9th Internaaonal Modal Analysis Conference, 1991,
pp. 1415-1421.

15. Pappa, R. S., Schenk, A., and Noll, C., "Eigensystem Realization Algorithm Modal
Identification Experiences with Mini-Mast,” NASA Technical Memorandum TM-4307,
Feb. 1992.

16. Longman, R. W., Lew, J. S., and Juang, J. N., "Comparison of Candidate Methods
to Distinguish Noise Modes from System Modes in Structural Identification,"
Proceedings of the AIAA 33rd Structures, Structural Dynamic and Materials Conference,
Dallas, TX, April 13-15, 1992, pp. 2307-2317.

17. Tolson, R. H., "Time Domain Modal Identification Methods for Application to Space
Station Freedom Modal Identification Experiment,” NAS1-18458, Task No. 36, George
Washington University, December 1991.

18. "Modal Identification Experiment: Delta Phase B Concept Definition Study,"
Contract NAS9-18200, MDSCC, Houston, TX, July 1992,

19. Tanner, S., NASA Langley Research Center, Hampton, VA, Feb. 1993,
20. Martinovic, Z., AMA, Inc., Feb. 1993,
21. Popp, C., NASA Johnson Space Center, Houston, TX, Feb. 1993,

22. Golub, G. H. and Reinsch, C., "Singular Value Decomposition and Least Squares
Solutions," Numer. Math. Vol. 14, 1970, pp. 403-420.

23. Martinovic, Z. N., "Error Analysis Applied in MDSSC-Noised Program,” Memo
to MIE Work Group, AMA Inc., May 1993.

86




APPENDIX A

We can show that (T'ATY! = T'A*!'T by mathematical induction.

Step (1): show true for k=2
(T'ATY! = T'AT
Step (2): assume true for k=n
(T'ATY' = T'A™'T

Step (3): show truth of (2) implies truth for k=n+1

Now

(TTATY = (T'ATY (T1AT)
But from (2)
(TATY = (T'AV'TY(T'AT) = T'A*T
Therefore, since truth of (2) implies truth for k=n+1, then we conclude that

(TPAT)' = TAM!T is true for all integer k.
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APPENDIX B

The following is taken from Ref, 22.
Singular Value Decomposition (SVD)

Let A be a real mx n matrix. Then there exist orthonormal matrices P (dimension

mxm) and Q (dimension nx n) such that

= PDQ7 (B.1)

-
N

PTP =1 (mxm)
Q'Q =1, (nxn)

where D is mxn and has the form

D =

ro
00
L= diag{al, Opy ooy ‘7,-}

o, 20,220,220 , r<min(m,n)
Eq. (B.1) is called the singular value decomposition and g,,..., 0, are called the singular
values. Thus if rank[A] =k then o, =0, ,==0=0.
The matrix P consists of the orthonormalized eigenvectors of AAT and the matrix
Q consists of the orthonormalized eigenvectors of A74A. The diagonal elements of T

are the non-negative square roots of the eigenvalues of A4 if m=n or AAT if m<n.
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APPENDIX C

PSD, 1bv*2/Hz PSD, Lb*2/Hz PSD, LbA2Y/Hz

PSD, Lbr2MHz

Figure C.1

Power Spectral Density for Square Wave and Ramped Input
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APPENDIXD  OKID-ERA Results for Square Wave and Impuise Preserved Ramped Input

f . Table D.1 RFFlc non-impulse preserved

Wi
|

e e e ——_
damp freq ex-freq mac
- |I (%) (Hz) (Hz)
“ 1.1421 0.5314 0.5359 0.9099
3 || 1.0025 0.5670 0.5670 0.9999
i , 1.0096 0.7458 0.7458 0.9960 H
: 0.9926 0.7925 0.7922 0.9952
. 0.9845 0.8078 0.8079 7 1.0000
B 1.0104 0.8239 0.8240 0.9996
. 1.0036 0.8604 0.8604 0.9987
0.9988 1.1337 1.1337 1.0000
! 1.1484 1.1926 1.1954 0.9978
) 1.0001 1.2227 12227 1.0000
“ 0.9964 1.2553 1.2552 1.0000
“ 1.0998 13221 1.3231 0.9992
0.9892 1.3668 1.3672 0.9998
0.9613 1.4650 1.4652 0.9926
0.9905 1.5028 1.5027 0.9998
1.1526 1.6468 1.6619 0.9319
1.0021 1.6781 1.6781 0.9943
1.0434 1.71253 1.7218 0.9815
0.9987 1.7399 1.7411 0.9891
0.8546 1.8207 1.8202 09147
1.0111 22328 2.2330 0.9732
0.9989 2.2505 2.2462 0.9464
1.0125 2.3592 2.3591 0.9970
“ 1.1125 2.4816 2.4849 0.9869
“ 1.0017 2.5889 2.5888 1.0000 “
“ 0.9979 2.8142 2.8142 1.0000 “
1.0094 2.9888 2.9887 0.9998 l
1.0000 3.1223 3.1225 0.9978
. 1.0005 32789 3.2788 0.9956
1.0307 34719 34728 0.9790
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Table D.1-Continued

li 0.9859 3.5207 3.5206 0.9963
ﬂ 0.9808 3617 3.6180 0.9893
II 0.9147 3. 7949 3.8091 0.9614
1.0534 4.0267 4.0308 0.9435
1.0615 4.4482 4.4531 0.9788 n
n 1.0117 4.5621 4.5651 0.9820 w
H 1.0555 4.6618 4.6609 0.9844 H
Table D.2 RFFIc impulse preserved
—
damp freq ex-freq mac
(%) (Hz) (Hz)
n 1.0038 0.5670 0.5670 0.9999 "
H 1.0071 0.7458 0.7458 0.9958 ll
0.9855 0.7924 0.7922 0.9544 II
0.9340 0.8078 0.8079 1.0000 ]
1.0111 0.8239 0.8240 0.9997 "
1.0039 0.8604 0.8604 0.9987 "
0.9988 1.1337 1.1337 1.0000 j’
F 1.1855 1.1927 1.1954 0.9977 H
1.0003 1.2227 1.2227 1.0000
0.9958 1.2553 1.2552 1.0000
1.0956 1.3221 1.3231 0.9992 "
0.9891 1.3668 1.3672 0.9998 "
0.9612 1.4650 1.4652 0.9927
0.991 1.5028 1.5027 0.9998
H 1.1580 1.6465 1.6619 0.9289
n 1.0012 1.6781 1.6781 0.9941
0.9997 1.7252 1.7218 0.9814
1.0016 1.7398 1.7411 0.9864
0.8457 1.8208 1.8202 0.9151 "
1.0106 2.2328 2.2330 0.9727 H
0.9997 2.2508 2.2462 0.9452 |I
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Table D.2-Continued

1.0128 23592 2.3591 0.972
1.1073 2.4815 2.4849 0.9879
1.0018 2.5889 2.5888 1.0000
0.9979 2.3142 2.8142 1.0000
1.0091 2.9888 2.9887 0.9998
1.0000 3.1223 3.1225 0.9977
1.0006 32789 3.2788 0.9956
1.0311 3.4719 3.4725 0.9796
0.9828 3.5206 3.5206 0.9961
" 0.9868 3.6171 3.6180 0.9900
" 0.9193 3.7943 3.8091 0.9555
1.0523 4.0268 4.0308 0.9437
1.0609 4.4482 4.4531 0.9791
“ 1.0175 4.5616 4.5651 0.9823
ll 1.0537 4.6617 4.6609 0.9848
Table D.3 RFF2c non-impulse preserved
- — — |
damp freq ex-freq mac
(%) (Hz) (Hz)
0.9721 0.5671 0.5670 1.0000
0.9844 0.7459 0.7458 0.9992
ll 0.9685 0.7922 0.7922 0.9987
0.9129 0.8094 0.8079 0.9999
0.9844 0.8241 0.8240 0.9934
0.9840 0.8606 0.8604 0.9687
0.9997 1.1337 1.1337 1.0000
0.9986 12227 1.2227 1.0000
Ir 1.0073 1.2552 1.2552 1.0000
Il 1.0107 1.3231 1.3231 0.9999
u 0.9734 1.3670 13672 0.9999
“ 0.9700 14651 1.4652 0.9931
“ 0.9886 1.5030 1.5027 0.9998 1'
“ 1.1807 1.6006 1.6017 0.9999 “
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Table D.3-Continued

1.1058 17182 1.7218 0.9803 1
1.1034 1.7401 1.7411 0.9709
H 0.9979 2.2338 2.2330 0.9853
1.0167 2.2507 22515 0.9557
r 1.0022 2.3592 2.3591 0.9998 "
10222 2.4833 2.4849 0.9800 ﬂ
0.9994 2.5888 2.5888 1.0000 II
1.0028 2.8143 2.8142 1.0000 ﬂ
I 1.0022 2.9888 2.9887 1.0000 j‘
1.0045 3.1223 3.1225 0.997
0.9990 3.2789 3.2788 0.9968
" 1.0011 3.4729 3.4725 0.9846
“ 1.0148 3.5196 3.5206 0.9992
0.8933 3.6197 3.6180 0.9658
1.0669 3.8046 3.8091 0.9935
LoiM 4.0282 40308 0.9864
0.9886 4.1156 4.1104 0.9360 J]
u 1.1866 4.1989 4.1967 0.9591
n 09672 4.2930 43193 0.9696
1.0519 4.4496 4.4531 0.9931
0.9386 4.5682 4.5651 0.9954
L 1.0181 4.6615 4.6609 0.9995 I
Table D.4 RFF2c impulse preserved
damp freq ex-freg mac
(%) (Hz) (Hz)
0.9732 0.5673 0.5670 1.0000
0.8057 0.6700 0.6660 0.9670
0.9850 0.7459 0.7458 0.9992
f 0.9701 0.7922 0.7922 0.9987
0.9091 0.8094 0.8079 0.9999
0.9849 0.8241 0.8240 0.9933
L 0.9837 0.8606 0.8604 0.9689
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Table D.4-Contin

ued:

0.9996 1.1337 1.1337 1.0000 jl
0.9982 12227 12227 1.0000 ||
1.0075 12553 1.2552 1.0000 "
1.0094 1.3231 13231 0.9999 H
0975 1.3670 1.3672 0.9999
0.9720 1.4651 1.4652 0.9934
0.9877 1.5030 1.5027 0.9998
1.1850 1.6007 1.6017 0.9999
1.1532 1.7186 1.7218 0.9816
1.1024 1.7401 1.7411 0.9723
0.9979 22335 2.2330 0.9855
1.0157 22507 22515 0.9548
1.0022 23592 2.3591 0.9998
1.0189 2.4833 2.4849 0.9801
0.9996 2.5888 2.5888 1.0000
1.0027 2814 2.8142 1.0000 “
1.0021 2.9888 2.9887 1.0000
1.0041 3.1223 3.1225 0.9977
0.9988 3.2789 32788 0.9968
1.0008 3.4729 34725 0.9842
1.0133 3.5194 3.5206 0.9993
0.9006 3.6197 3.6180 0.96712
1.0633 3.8048 3.8091 0.9939
1.0173 4.0282 4.0308 0.9868
0.9908 4.1155 4.1104 0.9391

1.1886 4.1988 4.1967 0.9565

n 0.9675 42927 43193 0.9698 “
1.0507 4.4495 4.4531 0.9934 “
0.9374 4.5677 4.5651 0.9957

I! 1.0134 4.6614 4.6609 0.9995
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Table D.5 RFF4c non-impulse preserved

damp freq ex-freq mac
(%) (Hz) (Hz) :
[— 1.0169 0.5672 0.5670 0.9998
Ir 1.0183 0.6707 0.6660 0.9475 , -
1.0222 0.7458 0.7458 0.9996
0.9339 0.7926 0.7922 0.9932 H
1.0428 0.8078 0.8079 0.9999 1
0.9916 0.8240 0.8240 1.0000 H
1,0038 0.8604 0.8604 0.9975 H
n 0.9952 0.8967 0.8967 0.9670 H
H 0.9659 1.1339 1.1337 0.9999 ,
H 1.1623 1.1958 1.1954 0.9912
0.9934 12227 12227 1.0000
0.9948 1.2556 12552 1.0000
H 1.0092 13235 13231 0.9997 1'
1.0311 13670 13672 0.9997 "
H 1.0162 1.4654 1.4652 0.9984 "
II 1.0052 1.5031 1.5027 0.9996 u
H 0.9985 1.5739 1.5739 0.9002 7
1.0659 1.6008 1.6017 1.0000
" L1728 2.0780 2.0857 0.9949 H '
1.0030 2.2330 2.2330 0.9771
1.0084 2.2503 22515 0.9520
n 0.9976 23591 2.3591 0.9988
ﬂ 1.0480 2.4826 2.4849 0.9745
0.9995 2.5888 2.5888 1.0000
0.9999 2.8143 2.8142 1.0000
n 0.9950 2.9888 2.9887 0.9997
ﬂ 1.0055 31224 3.1225 0.9933 -
" 0.9990 3.2789 3.2788 0.9864
1.0199 3.4729 3.4725 0.9541
0.9751 3.5209 3.5206 0.9932 H
“ 1.0463 3.6208 3.6180 0.9944 “
u 1.0113 4.0289 4.0308 0.9467 “ )
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Table D.5-Continued

—
41142 4.1104 0.9414
41971 4.1967 0.9222
4.4459 4.4531 0.9875
46611 4.6609 0.9956 |
Table D.6 RFF4c impulse preserved
==
damp freq ex-freq mac
(%) (Hz) (Hz)
1.0178 0.5672 0.5670 0.9998
1.0212 0.6711 0.6660 0.9533
1.0285 0.7458 0.7458 0.9996
0.9502 0.7931 0.7922 0.9874
1.0598 0.8073 0.8079 0.9998
0.9904 0.8240 0.8240 0.9999
1.0026 0.8604 0.8604 0.9979
ﬁ 0.9967 0.8967 0.8967 0.9713
0.9635 1.1338 1.1337 0.9999 JI
Il 1.1566 1.1958 1.1954 0.9907
|| 0.9927 1.2227 1.2227 1.0000
| 0.9932 1.2556 1.2552 1.0000
1.0093 1.3234 1.3231 0.9997
1.0256 1.3670 13672 0.9997
1.0157 1.4654 1.4652 0.9983
IF 1.0051 1.5031 1.5027 ' 0.9996
0.9970 1.5739 1.5739 0.9093
1.0578 1.6008 1.6017 1.0000
1.1449 2.0781 2.0857 0.9956
1.0043 2.2330 2.2330 0.9798
1.0057 2.2503 2.2515 0.9548
|| 0.9976 2.3591 2.3594 0.9987
1.0487 2.4825 2.4849 0.9746 |
0.9993 2.5888 2.5888 1.0000 “
IL__ 1.0006 28142 2.8142 0.9999 JJ
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Table D.6-Continued

100

0.9951 2.9888 2.9887 0.9998 H
1.0040 3.1224 31228 0.9962 u
0.9992 3.2789 3.2788 0.9863 "
1.0128 3.4729 34725 0.958X H
0.9741 3.5207 3.5206 0.9940 Il

u 1.0475 3.6205 3.6180 0.9943 u

F 1.0134 4.0288 4.0308 0.9456 Il
1.0693 4.1140 4.1104 0.9417

H 1.1747 4.1979 4.1967 0.9265
1.0606 4.4460 4.4531 0.9882 "
0.9505 4.6605 4.6609 0.9945 1’



APPENDIX E  Power Spectral Density for Square Wave and Zero-Order Hold Ramped Input

104 RFF1 -input 1 104 RFF1 - input 2
§ 10° § 10?
102 a 102
E z
10"} 10!
0 5
frequency (Hz) frequency (Hz)
104 RFF1 - input 3 104 RFF1 - input 4
3
3
§ 108 4 § 103
- 1 g
£ 14
10 100
. 0 5
frequency (1z) frequency (Hz)
104 RFF1 - input § 104 RFF1 - input 6
§ 109 T
g 10 g 10
14 £
10" — 10
0 5 0
frequency (z) frequency (Hz)
104 RFFI1 - input 7 - 108 RFF1 - input 8
104
g 2
<
g £ 10
10 g
Lk 2 10
: o 1
1 10 0 s
frequency (Hz) frequency (Hz)
Figure E.1 PSD for RFF1 comparing impulse (dashed) and

non-impulse (solid) preserved input

101



PSD, Lbs"2/Hz

PSD, Lbs*2/Hz

PSD, Lbs*2/Hz

PSD, Lbs*2/Hz

Figure E.2
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100
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it }
10 5 y
frequency (Hz)
104 RFF2 - input 3
103
102
10
0 5
frequency (Hz)
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10!
0 5
frequency (Hz)
104 RFF2 - input 7
103
102
100 —
0 s

frequency (Hz)

PSD, Lbs*2/Hz

PSD, Lbs*2/Hz

PSD, Lbs"2/Hz

PSD, LbsA2/Hz

104 RFF2 - input 2

103
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10!
100
0 5
frequency (Hz)
104 RFF2 - input 4
103
102 .
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0 5
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103
102
10!
0 5
frequency (Hz)
05— RFF2 - input§
104
103
102
0

frequency (Hz)

PSD for RFF2 compaﬁng impulse (dashed) and
non-impulse (solid) preserved input
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RFF3 - input 1 104 RFF3 - input2

104
103
g » g
3 3w
a 102 a
Y £ 10
101! » 100
0 5 0 5
frequency (Hz)
106 104 RFF3 - input4 _

10% 103

102 102

PSD, LbsA2Hz
PSD, LbsA2/Hz

10t 101
0 0

5
frequency (Hz) frequency (Hz)
104 RFF3 - input 5 104 RFF3 - input 6
§ 108 % 10
3 3
a 102 a 102
£ &
1 J il
10 0 5 10 0 5
frequency (Hz) frequency (Hz)
104 RFF3 - input 7 105 RFF3 - input 8
§ 10° g 104
3 3
8 10 g 10
£ &
1l J 2
10 0 s 10 0 s
frequency (Hz) frequency (Hz)
Figure E.3 PSD for RFF3 cbmpan'ng impulse (dashed) and

non-impulse (solid) preserved input
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PSD, Lbs*2/Hz PSD, Lbs*2/Hz PSD, Lbs*2/Hz

PSD, LbsA2/Hz

Figure E.4

108
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frequency (Hz)
103
102
101t
0 5
frequency (Hz)
104 o RFF4 - input 5
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0 5
frequency (Hz)
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frequency (Hz)
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frequency (Hz)
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frequency (Hz)
105 RFF4 - input 8
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frequency (Hz)

PSD for RFF4 comparing impulse (dashed) and
non-impulse (solid) preserved input
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APPENDIX F

mu UD“ZJHZ

LbA2/Hz

.i
W

PSD, LvA2/Hz

PSD, Lb 2/Hz

Figure F.1

Power Spectral Density for Square Wave and Thruster Model Input
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104 g
10 3
a
102 4
10
0 5
frequency (Hz)
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108 RFF1 - input 5

104

108
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LTI SRS W e}
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10
0 : 5
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10%
104
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0 5
frequency (Hz)

PSD for RFF1 comparing impulse (dashed) and
non-impulse (solid) preserved input
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Figure F.2

RFF2 - input 1

frequency (Hz)
RFF2 - input 3
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RFF2 - input §
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RFF2 - input 7
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RFF? - input 2
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0 5
frequency (Hz)

RFF2 - input 8
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105

104

103

102
0

W

frequency (Hz)

PSD for RFF2 comparing impulse (dashed) and
non-impulse (solid) preserved input
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RFF3 - input | 108 RFF3 - input 2

108
: 104
g o | &
3 3 10
I 109 a .
2 £ 102
102! - 100
0 5 0 5
frequency (Hz) frequency (Hz)
105 RFF3 - input 3 ' 105 RFF3 - input 4
104
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3 3
g 10 103
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106 RFF3 - input 7 106 RFF3 - input 8
g 108 § 105
3 104 B o6
a a
£ 10 & 10 |
102 A 102
0 5 0 5
frequency (Hz) frequency (Hz)
Figure F.3 PSD for RFF3 comparing impulse (dashed) and

non-impulse (solid) preserved input
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PSD, LbA2/Hz

PSD, LbA2/Hz

i

PSD, Lb\2/Hz

PSD, LWw2/Hz

i

Figure F4
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PSD for RFF4 comparing impulse (dashed) and

non-impulse (solid) prescrved input
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APPENDIX G

OKID-ERA Results for Square Wave and Thruster Model Input

Table G.1 Recovered

modes using criterion 1 for RFFlc. B

H non-impulse preserved impulse preserved
: exact
damp freq mac damp freq mac freq
(%) (Hz) (%) (Hz) (Hz)
1.0580 0.5369 0.9485 - - - 0.5333
1.0482 0.5673 0.9998 0.9921 0.5671 1.0000 0.5670
0.9457 0.6710 0.9068 - --- - 0.6660
0.9545 0.7457 0.9970 0.9930 0.7457 0.9992 0.7458
1.0106 0.7923 0.9924 0.9872 0.7924 0.9989 0.7922
1.02535 0.8073 0.9999 1.0318 0.8078 1.0000 0.8079
1.0213 0.3242 0.9959 0.9945 0.8240 0.9994 0.8240
II 0.9943 0.8604 0.9820 1.0018 0.8604 0.9985 0.8604
ﬂ 0.9820 1.0012 0.9825 0.9489 1.0021 0.9798 1.0033
0.9944 1.1337 1.0000 0.9993 1.1337 1.0000 1.1337 l
0.9943 1.1958 0.9939 0.9557 1.1954 0.9998 1.1954 F
0.9916 1.2231 1.0000 0.9969 1.2227 1.0000 1.2227
1.0011 1.2552 1.0000 1.0043 1.2553 1.0000 1.2552
I 1.0036 1.3239 0.9951 1.0499 1.3239 0.9986 1.3231
I 1.0066 1.3668 0.9998 1.0062 1.3673 0.9999 1.3672 V
1.0343 1.4675 0.9258 -— — -— 1.4652
1.0227 1.5030 0.9997 1.0049 1.5030 0.9997 1.5027
H 0.9953 1.6015 0.9999 0.9627 1.6020 0.9999 1.6017 I
l 0.9153 1.6784 0.9937 1.0032 1.6782 0.9960 1.6781 I
I - - -— 1.0617 1.7204 0.9940 1.7218 n
[ - - - 0.9927 1.7407 0.9904 1.7411 u
1.0646 1.7498 0.9383 1.0640 1.7603 0.9689 ﬁ“ﬁ.%lo “
“ 1.1829 1.7943 0.9846 0.9933 1.7970 0.9386 “ 1.7956 ﬁ
l 1.0737 1.9012 0.9236 - — - 1.8905
- — 1.0681 1.9472 0.9538 1.9463 “
1.0070 2.0307 0.9994 0.9907 2.0299 1.0000 2.0297 n
II 1.1295 2.0902 0.9902 1.1163 2.0857 0.9985 “ 2.0857J
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Table G.1-Continued

— — - 1.0163 2.1155 0.9672
1.0092 2.2331 0.9590 - -— —
0.9751 2.2500 0.9479 0.9989 2.2503 0.9506
1.0301 2.3598 0.9396 0.9903 2.3590 0.9959 .
[ 1.0083 2.4334 0.9817 1.0000 2.4331 0.9866 H .
0.9858 2.5898 1.0000 0.9933 2.5888 1.0000 .
0.9979 2.8135 0.9999 1.0099 2.8142 0.9998 || .
0.9655 2.9879 0.9990 0.9895 2.9887 0.9998 H .
l 0709 3.1232 7”0.97953 1.0046 3.1232 0.9877 H 3.1225
1.9118 amm 0.9960 0.9836 3.2191 0.9822 H>3.2788
ﬁ 3.4734 0.9823 - - - 3.4725
I 0.9325 3.5190 0.9185 1.0386 3.5209 0.9539 H 3.5206 l
0.8670 3.6168 0.9909 0.8466 3.6204 0.9843 3.6180 I
- — -— 1.0817 3.6856 0.9877 3.6905
I 0.9053 3.8098 0.9991 0.9889 3.8100 0.9992 3.8091
n 1.0171 3.8635 0.9936 1.1408 3.8648 0.9949 3.8930
0.9135 4.0293 0.9389 -— --- - 4.0308
1.0150 4.0676 0.9347 --- -— - i 4.0592
- -— - 0.9901 4.3206 0.9986 4.3193 I
0.8561 4.3681 0.9694 1.1166 4.3859 0.9934 4.3812
0.83674 4.4045 0.9487 - - — 4.4215 I
- — - 0.9397 4.4501 0.9946 4.4531 H
I - - - 0.9686 4.55719 0.9098 4.5651
[ 0.9629 4.6448 0.9939 1.0252 4.6504 0.9884 4.6609
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APPENDIX H Output Ranking From Gram-Schmidt Orthogonalization

Table H.1 Ranking (output no.) of outputs from Gram-Schmidt

——
B RFFlIn RFF2n RFFé4n RFF1234n Concatenation

) 46 46 46 46 46

53 53 29 2 53

; 29 28 39 59 st

: I, 56 34 51 32 2
“ 55 58 52 28 ||
¥ 2 12 13 $3 58 “
. 57 52 2 61 29 |
28 37 28 29 55 H

" 2 39 14 39 2

u 32 29 53 56 a1

H 47 9 40 55 39

. l 39 41 20 41 59

61 47 47 28 61

41 4 55 4 47

i 59 40 41 47 3

o 52 a8 3 49 20

i 3 54 56 3 !
B 33 3 48 43 49 |
: 34 2 3 58 56 f

. 30 3 1 34 19

1 44 19 19 1

4“4 ' a4 44 34

58 17 34 1 44

48 30 30 30 52

) 51 52 43 30
s 49 49 51 48 |

. I 32 36 36 36

o 50 50 50 50 50
: : . | 2 37 40 Jl
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Table H.1-Continued
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APPENDIX 1 Data Acquisition Errors

The following is taken from Ref. 23. The data acquisition errors (noise model)
consisted of the following |
Sampling Delay Error
Scale Factor Error
Electrical Noise
Bias Error

Digitization Error

All random numbers were generated with a normal distribution. Measurements were
converted to g’s before adding noise. That is, the multiplying factor was 1/386 since the
measurements were in in/sec’.

”Sampling delay error was randomly éénemted for each output by using the time
delays given in Table I. Response at delayed time (noise data) was obtained by linearly

interpolating the response at the undelayed time (i.e., clean data).

Table 1 Sampling delay errors
Bus time uncertainty 0-1 milli sec.
BIU time uncertainty +/-0.05 milli sec.
Local MDM time +/-0.15 milli sec.
uncertainty
MDM channel skew 0-1.5 milli sec.

113



Scale factor error was randomly generated for each output by using Table II.

Table II Scale factor errors
_ S - - - - _

Temperature variation +/-1.5%
in accelerometer

MDM Signal conditioning +/-0.5%
card

Accelerometer internal +/-0.1%
axis misalignment

Mounting misalignment +/-0.0004%
with Space Station
coordinate system

Repeatability over +/-0.278%
3 years
A/D nonlinearity +/-0.5%

p

The response at each time was multiplied with the sum of the scale factor errors and this
number was added to the response itself.

Electrical noise was randomly generated for each output with a maximum amplitude
of 10 micro g. This signal was then filtered with a band pass filter allowing only -1 to
5 Hz components to remain. The Root Mean Square (RMS) value was computed for this
filtered noise signal. The filtered noise signal was divided by the RMS value and this

new noise signal was added to the response.
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Bias error was randomly generated and added to each output by using Table III.

Table III Bias errors

Temperature +/-1 milli g
Launch stress +/-0.1 milli g

Repeatability +/-2.8 milli g
over 3 years

Digitization error was performed using Table IV.

Table IV Digitization errors
L
Ranges Resolution
(milli g) (milli g)
1.28 0.002
7.83 0.006
27.5 0.018
86.5 0.054
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